Suppr超能文献

卵测试表明温度依赖性别决定的爬行动物模型中存在隐秘的遗传影响。

Ovotestes suggest cryptic genetic influence in a reptile model for temperature-dependent sex determination.

机构信息

Institute for Applied Ecology, University of Canberra, Canberra, Australia.

Australian National Wildlife Collection, CSIRO, Canberra, Australia.

出版信息

Proc Biol Sci. 2021 Jan 27;288(1943):20202819. doi: 10.1098/rspb.2020.2819. Epub 2021 Jan 20.

Abstract

Sex determination and differentiation in reptiles is complex. Temperature-dependent sex determination (TSD), genetic sex determination (GSD) and the interaction of both environmental and genetic cues (sex reversal) can drive the development of sexual phenotypes. The jacky dragon () is an attractive model species for the study of gene-environment interactions because it displays a form of Type II TSD, where female-biased sex ratios are observed at extreme incubation temperatures and approximately 50 : 50 sex ratios occur at intermediate temperatures. This response to temperature has been proposed to occur due to underlying sex determining loci, the influence of which is overridden at extreme temperatures. Thus, sex reversal at extreme temperatures is predicted to produce the female-biased sex ratios observed in . The occurrence of ovotestes during development is a cellular marker of temperature sex reversal in a closely related species . Here, we present the first developmental data for , and show that ovotestes occur at frequencies consistent with a mode of sex determination that is intermediate between GSD and TSD. This is the first evidence suggestive of underlying unidentified sex determining loci in a species that has long been used as a model for TSD.

摘要

爬行动物的性别决定和分化较为复杂。温度依赖型性别决定(TSD)、遗传性别决定(GSD)以及环境和遗传线索的相互作用(性别反转)都可以驱动性表型的发育。杰克龙()是研究基因-环境相互作用的一个有吸引力的模型物种,因为它表现出一种 II 型 TSD,在极端孵化温度下观察到雌性偏性性别比,而在中间温度下则出现大约 50:50 的性别比。这种对温度的反应据说是由于潜在的性别决定基因座引起的,在极端温度下,这些基因座的影响会被超越。因此,在极端温度下的性别反转预计会产生在中观察到的雌性偏性性别比。在发育过程中出现卵睾是密切相关物种中温度性别反转的细胞标记。在这里,我们首次提供了的发育数据,并表明卵睾的出现频率与介于 GSD 和 TSD 之间的性别决定模式一致。这是在长期以来被用作 TSD 模型的物种中首次暗示存在潜在的未识别性别决定基因座的证据。

相似文献

1
Ovotestes suggest cryptic genetic influence in a reptile model for temperature-dependent sex determination.
Proc Biol Sci. 2021 Jan 27;288(1943):20202819. doi: 10.1098/rspb.2020.2819. Epub 2021 Jan 20.
2
Developmental dynamics of sex reprogramming by high incubation temperatures in a dragon lizard.
BMC Genomics. 2022 Apr 22;23(1):322. doi: 10.1186/s12864-022-08544-2.
3
Segregating variation for temperature-dependent sex determination in a lizard.
Heredity (Edinb). 2011 Apr;106(4):649-60. doi: 10.1038/hdy.2010.102. Epub 2010 Aug 11.
4
Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination.
Proc Biol Sci. 2011 Jan 22;278(1703):256-65. doi: 10.1098/rspb.2010.1040. Epub 2010 Aug 4.
5
Differential intron retention in chromatin modifier genes is implicated in reptile temperature-dependent sex determination.
Sci Adv. 2017 Jun 14;3(6):e1700731. doi: 10.1126/sciadv.1700731. eCollection 2017 Jun.
7
Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination.
PLoS Genet. 2021 Apr 15;17(4):e1009465. doi: 10.1371/journal.pgen.1009465. eCollection 2021 Apr.
8
Temperature-Induced Sex Reversal in Reptiles: Prevalence, Discovery, and Evolutionary Implications.
Sex Dev. 2021;15(1-3):148-156. doi: 10.1159/000515687. Epub 2021 Jun 10.
10
Sex determination mode does not affect body or genital development of the central bearded dragon ().
Evodevo. 2017 Dec 4;8:25. doi: 10.1186/s13227-017-0087-5. eCollection 2017.

引用本文的文献

2
Environmental (and Random?) Sex Determination in Endangered and Invasive Phelsuma Geckos.
Sex Dev. 2024;18(1-6):55-60. doi: 10.1159/000538906. Epub 2024 Apr 13.
5
First evidence of hemiclitores in snakes.
Proc Biol Sci. 2022 Dec 21;289(1989):20221702. doi: 10.1098/rspb.2022.1702. Epub 2022 Dec 14.
6
Developmental dynamics of sex reprogramming by high incubation temperatures in a dragon lizard.
BMC Genomics. 2022 Apr 22;23(1):322. doi: 10.1186/s12864-022-08544-2.
7
Effects of natural nest temperatures on sex reversal and sex ratios in an Australian alpine skink.
Sci Rep. 2021 Oct 11;11(1):20093. doi: 10.1038/s41598-021-99702-1.

本文引用的文献

1
Chronology of Gonadal Development in the Malayan Snail-eating Turtle .
Zool Stud. 2020 Jun 17;59:e20. doi: 10.6620/ZS.2020.59-20. eCollection 2020.
2
The mole genome reveals regulatory rearrangements associated with adaptive intersexuality.
Science. 2020 Oct 9;370(6513):208-214. doi: 10.1126/science.aaz2582.
3
Embryonic Temperature Programs Phenotype in Reptiles.
Front Physiol. 2020 Jan 31;11:35. doi: 10.3389/fphys.2020.00035. eCollection 2020.
4
Cellular calcium and redox regulation: the mediator of vertebrate environmental sex determination?
Biol Rev Camb Philos Soc. 2020 Jun;95(3):680-695. doi: 10.1111/brv.12582. Epub 2020 Feb 6.
5
Sex reversal.
Curr Biol. 2018 Nov 5;28(21):R1234-R1236. doi: 10.1016/j.cub.2018.09.043.
9
How does temperature determine sex?
Science. 2018 May 11;360(6389):601-602. doi: 10.1126/science.aat5993.
10
Sexual antagonism and the instability of environmental sex determination.
Nat Ecol Evol. 2018 Feb;2(2):343-351. doi: 10.1038/s41559-017-0427-9. Epub 2018 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验