Suppr超能文献

使用通用正交网络(UNION)生物墨水的3D生物打印

3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks.

作者信息

Hull Sarah M, Lindsay Christopher D, Brunel Lucia G, Shiwarski Daniel J, Tashman Joshua W, Roth Julien G, Myung David, Feinberg Adam W, Heilshorn Sarah C

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.

Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Adv Funct Mater. 2021 Feb 10;31(7). doi: 10.1002/adfm.202007983. Epub 2020 Nov 20.

Abstract

Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, we developed a versatile, bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers. We term this family of materials UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) were each used as backbone polymers to create inks with storage moduli spanning 200 to 10,000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids were printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.

摘要

三维(3D)生物打印是一种用于制造组织样结构的很有前景的技术,但生物墨水缺乏多样性是一个主要限制。理想情况下,每种细胞类型都能用其自身可定制的生物墨水进行打印。为满足对通用生物墨水策略的这一需求,我们开发了一种通用的、生物正交的生物墨水交联机制,该机制与细胞兼容且适用于多种聚合物。我们将这类材料称为通用正交网络(UNION)生物墨水。作为对UNION生物墨水通用性的证明,明胶、透明质酸(HA)、重组弹性蛋白样蛋白(ELP)和聚乙二醇(PEG)均被用作主链聚合物来制备储能模量范围为200至10,000 Pa的墨水。由于UNION生物墨水通过共同的化学方法交联,多种材料可一起打印以形成统一的、有内聚力的结构。这种方法与任何能使UNION交联剂扩散的支撑浴兼容。基质黏附性的人角膜间充质基质细胞和非基质黏附性的人诱导多能干细胞衍生的神经祖细胞球体均用UNION生物墨水进行了打印。打印后细胞保持了高活力并表达了特征性表型标志物。因此,UNION生物墨水是一种通用策略,可扩展用于3D生物打印的可定制材料工具集。

相似文献

1
3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks.
Adv Funct Mater. 2021 Feb 10;31(7). doi: 10.1002/adfm.202007983. Epub 2020 Nov 20.
2
Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
Acta Biomater. 2019 Nov;99:121-132. doi: 10.1016/j.actbio.2019.09.007. Epub 2019 Sep 17.
3
3D Bioprinting Using Universal Fugitive Network Bioinks.
ACS Appl Bio Mater. 2024 Oct 21;7(10):7040-7050. doi: 10.1021/acsabm.4c01220. Epub 2024 Sep 18.
4
3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
Acta Biomater. 2021 Jan 1;119:75-88. doi: 10.1016/j.actbio.2020.11.006. Epub 2020 Nov 7.
5
Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
Biomaterials. 2018 Jul;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034. Epub 2018 Apr 16.
6
Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
Tissue Eng Part A. 2021 Sep;27(17-18):1168-1181. doi: 10.1089/ten.TEA.2020.0305. Epub 2021 Feb 26.
8
3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
Biofabrication. 2021 Aug 5;13(4). doi: 10.1088/1758-5090/ac0ff0.
9
Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models.
Acta Biomater. 2023 Oct 1;169:243-255. doi: 10.1016/j.actbio.2023.08.008. Epub 2023 Aug 11.
10
A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs.
Acta Biomater. 2015 Oct;25:24-34. doi: 10.1016/j.actbio.2015.07.030. Epub 2015 Jul 22.

引用本文的文献

1
Advanced cell-adaptable hydrogels for bioprinting.
Bioact Mater. 2025 Aug 6;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044. eCollection 2025 Nov.
3
Biofabrication in suspension media-a decade of advances.
Biofabrication. 2025 Jun 3;17(3):033001. doi: 10.1088/1758-5090/addc42.
4
Genetic and bioactive functionalization of bioinks for 3D bioprinting.
Bioprocess Biosyst Eng. 2025 May 20. doi: 10.1007/s00449-025-03180-y.
6
Directional Fluidity of Dense Emulsion Activated by Transverse Wedge-Shaped Microroughness.
Micromachines (Basel). 2025 Mar 14;16(3):335. doi: 10.3390/mi16030335.
7
In situ UNIversal Orthogonal Network (UNION) bioink deposition for direct delivery of corneal stromal stem cells to corneal wounds.
Bioact Mater. 2025 Feb 24;48:414-430. doi: 10.1016/j.bioactmat.2025.02.009. eCollection 2025 Jun.
8
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70003. doi: 10.1002/wnan.70003.
9
Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability.
Acta Biomater. 2025 Jan 24;193:128-142. doi: 10.1016/j.actbio.2025.01.009. Epub 2025 Jan 9.

本文引用的文献

1
Bioprinting Cell- and Spheroid-Laden Protein-Engineered Hydrogels as Tissue-on-Chip Platforms.
Front Bioeng Biotechnol. 2020 Apr 28;8:374. doi: 10.3389/fbioe.2020.00374. eCollection 2020.
2
Bioorthogonal Strategies for Engineering Extracellular Matrices.
Adv Funct Mater. 2018 Mar 14;28(11). doi: 10.1002/adfm.201706046. Epub 2018 Jan 19.
3
3D bioprinting of collagen to rebuild components of the human heart.
Science. 2019 Aug 2;365(6452):482-487. doi: 10.1126/science.aav9051.
4
3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts.
Adv Sci (Weinh). 2019 Apr 15;6(11):1900344. doi: 10.1002/advs.201900344. eCollection 2019 Jun 5.
5
Bioprinting of stem cell expansion lattices.
Acta Biomater. 2019 Sep 1;95:225-235. doi: 10.1016/j.actbio.2019.05.014. Epub 2019 May 13.
6
Effective bioprinting resolution in tissue model fabrication.
Lab Chip. 2019 Jun 7;19(11):2019-2037. doi: 10.1039/c8lc01037d. Epub 2019 May 13.
7
Matrix Remodeling Enhances the Differentiation Capacity of Neural Progenitor Cells in 3D Hydrogels.
Adv Sci (Weinh). 2019 Jan 11;6(4):1801716. doi: 10.1002/advs.201801716. eCollection 2019 Feb 20.
8
Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5714-5726. doi: 10.1021/acsami.8b13792. Epub 2019 Jan 30.
9
Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications.
Tissue Eng Regen Med. 2018 Aug 16;15(5):531-546. doi: 10.1007/s13770-018-0152-8. eCollection 2018 Oct.
10
Reliability of human cortical organoid generation.
Nat Methods. 2019 Jan;16(1):75-78. doi: 10.1038/s41592-018-0255-0. Epub 2018 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验