Suppr超能文献

纤维状和无定形胶原蛋白的互穿网络促进细胞铺展和水凝胶稳定性。

Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability.

作者信息

Brunel Lucia G, Long Chris M, Christakopoulos Fotis, Cai Betty, Johansson Patrik K, Singhal Diya, Enejder Annika, Myung David, Heilshorn Sarah C

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

出版信息

Acta Biomater. 2025 Jan 24;193:128-142. doi: 10.1016/j.actbio.2025.01.009. Epub 2025 Jan 9.

Abstract

Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. STATEMENT OF SIGNIFICANCE: Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications.

摘要

水凝胶由人体中最丰富的蛋白质胶原蛋白组成,由于其能够支持细胞活性,因此被广泛用作组织工程的支架。然而,含有封装细胞的胶原蛋白水凝胶常常会因细胞产生的力而发生整体收缩,而减轻这种不良变形的传统策略往往会损害胶原蛋白的纤维微观结构或细胞相容性。为了在保持水凝胶结构完整性的同时支持封装细胞的铺展,我们提出了一种由两种具有不同交联机制和微观结构的独特胶原蛋白网络组成的互穿网络(IPN)。首先,物理自组装的胶原蛋白网络保留了纤维微观结构,并使封装的人角膜间充质基质细胞能够铺展。其次,通过生物正交化学共价交联的无定形胶原蛋白网络填充了纤维之间的空隙,并稳定水凝胶以抵抗细胞诱导的收缩。这种胶原蛋白IPN平衡了天然胶原蛋白的生物功能与共价交联工程聚合物的稳定性。综上所述,这些数据代表了一条新途径,即通过利用纤维状和无定形胶原蛋白网络的IPN来维持细胞的纤维诱导铺展和胶原蛋白水凝胶的结构完整性。重要性声明:胶原蛋白水凝胶由于其对细胞活性的支持而被广泛用作组织工程的支架。然而,胶原蛋白水凝胶常常会因细胞产生的力而发生不期望的尺寸和形状变化,而减轻这种变形的传统策略通常会损害胶原蛋白的纤维微观结构或细胞相容性。在本研究中,我们引入了一种创新的互穿网络(IPN),它将物理自组装的纤维状胶原蛋白(有利于促进细胞粘附和铺展)与共价交联的无定形胶原蛋白(有利于增强整体水凝胶稳定性)结合在一起。我们的IPN设计保持了胶原蛋白的天然纤维结构,同时显著提高了对细胞诱导收缩的抵抗力,为提高胶原蛋白水凝胶在组织工程应用中的性能和可靠性提供了一个有前景的解决方案。

相似文献

1
Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability.
Acta Biomater. 2025 Jan 24;193:128-142. doi: 10.1016/j.actbio.2025.01.009. Epub 2025 Jan 9.
2
3
6
Phototunable interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors.
Acta Biomater. 2021 Mar 1;122:133-144. doi: 10.1016/j.actbio.2020.12.041. Epub 2020 Dec 21.
7
Tunable fibrin-alginate interpenetrating network hydrogels to support cell spreading and network formation.
Acta Biomater. 2020 May;108:142-152. doi: 10.1016/j.actbio.2020.03.014. Epub 2020 Mar 13.
8
Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo.
Acta Biomater. 2019 Jun;91:159-172. doi: 10.1016/j.actbio.2019.04.054. Epub 2019 May 2.
9
Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering.
J Mater Sci Mater Med. 2012 Sep;23(9):2267-79. doi: 10.1007/s10856-012-4684-5. Epub 2012 May 26.

引用本文的文献

1
Multidirectional alignment of collagen fibers to guide cell orientation in 3D-printed tissue.
bioRxiv. 2025 May 25:2025.05.20.654730. doi: 10.1101/2025.05.20.654730.
3
Collagen fiber density observed in metastatic ovarian cancer promotes tumor cell adhesion.
Acta Biomater. 2025 Jun 15;200:299-312. doi: 10.1016/j.actbio.2025.05.035. Epub 2025 May 13.
4
Recent Advances in the Development and Application of Cell-Loaded Collagen Scaffolds.
Int J Mol Sci. 2025 Apr 24;26(9):4009. doi: 10.3390/ijms26094009.

本文引用的文献

1
In situ UNIversal Orthogonal Network (UNION) bioink deposition for direct delivery of corneal stromal stem cells to corneal wounds.
Bioact Mater. 2025 Feb 24;48:414-430. doi: 10.1016/j.bioactmat.2025.02.009. eCollection 2025 Jun.
2
Mechanobiology of 3D cell confinement and extracellular crowding.
Biophys Rev. 2024 Oct 23;16(6):833-849. doi: 10.1007/s12551-024-01244-z. eCollection 2024 Dec.
3
Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration.
Nat Commun. 2024 Mar 29;15(1):2766. doi: 10.1038/s41467-024-46774-y.
4
Current Advances in Corneal Stromal Stem Cell Biology and Therapeutic Applications.
Cells. 2024 Jan 16;13(2):163. doi: 10.3390/cells13020163.
6
Embedded 3D Bioprinting of Collagen Inks into Microgel Baths to Control Hydrogel Microstructure and Cell Spreading.
Adv Healthc Mater. 2024 Oct;13(25):e2303325. doi: 10.1002/adhm.202303325. Epub 2024 Feb 26.
7
Collagen Fibril Orientation Instructs Fibroblast Differentiation Via Cell Contractility.
Adv Sci (Weinh). 2023 Aug;10(22):e2301353. doi: 10.1002/advs.202301353. Epub 2023 May 30.
8
Effect of Mechanical Microenvironment on Collagen Self-Assembly In Vitro.
J Funct Biomater. 2023 Apr 21;14(4):235. doi: 10.3390/jfb14040235.
10
Print-and-Grow within a Novel Support Material for 3D Bioprinting and Post-Printing Tissue Growth.
Adv Sci (Weinh). 2022 Dec;9(34):e2200882. doi: 10.1002/advs.202200882. Epub 2022 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验