Suppr超能文献

COVID-19 CG 通过关注的地点和日期来实现 SARS-CoV-2 的突变和谱系追踪。

COVID-19 CG enables SARS-CoV-2 mutation and lineage tracking by locations and dates of interest.

机构信息

Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States.

Independent web designer, Cambridge, United States.

出版信息

Elife. 2021 Feb 23;10:e63409. doi: 10.7554/eLife.63409.

Abstract

COVID-19 CG (covidcg.org) is an open resource for tracking SARS-CoV-2 single-nucleotide variations (SNVs), lineages, and clades using the virus genomes on the GISAID database while filtering by location, date, gene, and mutation of interest. COVID-19 CG provides significant time, labor, and cost-saving utility to projects on SARS-CoV-2 transmission, evolution, diagnostics, therapeutics, vaccines, and intervention tracking. Here, we describe case studies in which users can interrogate (1) SNVs in the SARS-CoV-2 spike receptor binding domain (RBD) across different geographical regions to inform the design and testing of therapeutics, (2) SNVs that may impact the sensitivity of commonly used diagnostic primers, and (3) the emergence of a dominant lineage harboring an S477N RBD mutation in Australia in 2020. To accelerate COVID-19 efforts, COVID-19 CG will be upgraded with new features for users to rapidly pinpoint mutations as the virus evolves throughout the pandemic and in response to therapeutic and public health interventions.

摘要

COVID-19 CG(covidcg.org)是一个开放资源,用于使用 GISAID 数据库中的病毒基因组跟踪 SARS-CoV-2 的单核苷酸变异 (SNV)、谱系和进化枝,同时通过位置、日期、基因和感兴趣的突变进行过滤。COVID-19 CG 为 SARS-CoV-2 传播、进化、诊断、治疗、疫苗和干预跟踪项目提供了显著的时间、劳动力和成本节约效用。在这里,我们描述了一些案例研究,用户可以在这些案例研究中(1)跨不同地理区域查询 SARS-CoV-2 刺突受体结合域 (RBD) 中的 SNV,以了解治疗药物的设计和测试,(2)影响常用诊断引物灵敏度的 SNV,以及(3)2020 年澳大利亚 S477N RBD 突变优势谱系的出现。为了加速 COVID-19 的研究,COVID-19 CG 将升级新功能,以便用户在整个大流行期间以及针对治疗和公共卫生干预措施时快速确定病毒进化过程中的突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ad/7901870/32bfdbf35c4d/elife-63409-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验