Suppr超能文献

机械驱动串联支架的3D喷射书写

3D jet writing of mechanically actuated tandem scaffolds.

作者信息

Moon Seongjun, Jones Michael S, Seo Eunbyeol, Lee Jaeyu, Lahann Lucas, Jordahl Jacob H, Lee Kyung Jin, Lahann Joerg

机构信息

Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea.

Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Sci Adv. 2021 Apr 14;7(16). doi: 10.1126/sciadv.abf5289. Print 2021 Apr.

Abstract

The need for high-precision microprinting processes that are controllable, scalable, and compatible with different materials persists throughout a range of biomedical fields. Electrospinning techniques offer scalability and compatibility with a wide arsenal of polymers, but typically lack precise three-dimensional (3D) control. We found that charge reversal during 3D jet writing can enable the high-throughput production of precisely engineered 3D structures. The trajectory of the jet is governed by a balance of destabilizing charge-charge repulsion and restorative viscoelastic forces. The reversal of the voltage polarity lowers the net surface potential carried by the jet and thus dampens the occurrence of bending instabilities typically observed during conventional electrospinning. In the absence of bending instabilities, precise deposition of polymer fibers becomes attainable. The same principles can be applied to 3D jet writing using an array of needles resulting in complex composite materials that undergo reversible shape transitions due to their unprecedented structural control.

摘要

在一系列生物医学领域中,对可控、可扩展且能与不同材料兼容的高精度微打印工艺的需求一直存在。静电纺丝技术具有可扩展性且能与多种聚合物兼容,但通常缺乏精确的三维(3D)控制。我们发现,在3D喷射书写过程中的电荷反转能够实现精确设计的3D结构的高通量生产。射流的轨迹由不稳定的电荷 - 电荷排斥力和恢复性粘弹性力之间的平衡所控制。电压极性的反转降低了射流所携带的净表面电位,从而抑制了传统静电纺丝过程中通常观察到的弯曲不稳定性的发生。在没有弯曲不稳定性的情况下,聚合物纤维的精确沉积变得可行。相同的原理可应用于使用针阵列的3D喷射书写,从而得到由于其前所未有的结构控制而经历可逆形状转变的复杂复合材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8482/8046364/352c1ee2e0e7/abf5289-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验