Suppr超能文献

联合使用丙型肝炎药物和阿魏酸可能会干扰 SARS-CoV-2 的刺突糖蛋白与 ACE2 的结合:分子模拟研究的结果。

Combined use of the hepatitis C drugs and amentoflavone could interfere with binding of the spike glycoprotein of SARS-CoV-2 to ACE2: the results of a molecular simulation study.

机构信息

O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine, Kharkiv, Ukraine.

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine.

出版信息

J Biomol Struct Dyn. 2022;40(19):8672-8686. doi: 10.1080/07391102.2021.1914168. Epub 2021 Apr 26.

Abstract

The worldwide rapid spread of the COVID-19 disease necessitates the search for fast and effective treatments. The repurposing of existing drugs seems to be the best solution in this situation. In this study, the molecular docking method was used to test 248 drugs against the receptor-binding domain (RBD) of spike glycoprotein of SARS-CoV-2, which is responsible for viral entry into the host cell. Among the top-ranked ligands are drugs that are used for hepatitis C virus (HCV) treatments (paritaprevir, ledipasvir, simeprevir) and a natural biflavonoid amentoflavone. The binding sites of the HCV drugs and amentoflavone are different. Therefore, the ternary complexes of the HCV drug, amentoflavone, and RBD can be created. For the 5 top-ranked ligands, the validating molecular dynamics simulations of binary and ternary complexes with RBD were performed. According to the MMPBSA-binding free energies, the HCV drugs ledipasvir and paritaprevir (in a neutral form) are the most efficient binders of the RBD when used in combination with amentoflavone.Communicated by Ramaswamy H. Sarma.

摘要

新型冠状病毒疾病(COVID-19)在全球范围内迅速传播,需要寻找快速有效的治疗方法。在这种情况下,重新利用现有药物似乎是最好的解决方案。在这项研究中,使用分子对接方法测试了 248 种药物对负责病毒进入宿主细胞的刺突糖蛋白受体结合域(RBD)的作用。排名靠前的配体中有用于治疗丙型肝炎病毒(HCV)的药物(帕利昔洛韦、来迪派韦、西米普韦)和一种天然双黄酮amentoflavone。HCV 药物和amentoflavone 的结合位点不同。因此,可以创建 HCV 药物、amentoflavone 和 RBD 的三元复合物。对前 5 种排名靠前的配体,对 RBD 的二元和三元复合物进行了验证性分子动力学模拟。根据 MMPBSA 结合自由能,当与 amentoflavone 联合使用时,HCV 药物 ledipasvir 和 paritaprevir(中性形式)是 RBD 的最有效结合物。由 Ramaswamy H. Sarma 传达。

相似文献

2
ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor.
J Biomol Struct Dyn. 2022 Aug;40(12):5493-5506. doi: 10.1080/07391102.2020.1871415. Epub 2021 Jan 10.
3
Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites.
ACS Nano. 2020 Aug 25;14(8):10616-10623. doi: 10.1021/acsnano.0c04798. Epub 2020 Aug 4.
7
Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism.
Biochem Biophys Res Commun. 2020 Jun 30;527(3):702-708. doi: 10.1016/j.bbrc.2020.05.028. Epub 2020 May 14.

引用本文的文献

1
SARS-CoV-2 drug resistance and therapeutic approaches.
Heliyon. 2025 Jan 15;11(2):e41980. doi: 10.1016/j.heliyon.2025.e41980. eCollection 2025 Jan 30.
2
The Therapeutic Potential of Natural Dietary Flavonoids against SARS-CoV-2 Infection.
Nutrients. 2023 Aug 3;15(15):3443. doi: 10.3390/nu15153443.
3
Potential of amentoflavone with antiviral properties in COVID-19 treatment.
Asian Biomed (Res Rev News). 2021 Aug 20;15(4):153-159. doi: 10.2478/abm-2021-0020. eCollection 2021 Aug.
4
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
5
Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid.
Front Pharmacol. 2021 Dec 22;12:768708. doi: 10.3389/fphar.2021.768708. eCollection 2021.
6
The Repurposed ACE2 Inhibitors: SARS-CoV-2 Entry Blockers of Covid-19.
Top Curr Chem (Cham). 2021 Oct 8;379(6):40. doi: 10.1007/s41061-021-00353-7.
7
Telaprevir is a potential drug for repurposing against SARS-CoV-2: computational and studies.
Heliyon. 2021 Sep;7(9):e07962. doi: 10.1016/j.heliyon.2021.e07962. Epub 2021 Sep 9.
8
Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning.
Comput Struct Biotechnol J. 2021;19:3187-3197. doi: 10.1016/j.csbj.2021.05.043. Epub 2021 May 26.

本文引用的文献

3
Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be.
Front Mol Biosci. 2020 Dec 17;7:605236. doi: 10.3389/fmolb.2020.605236. eCollection 2020.
5
Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19.
Inform Med Unlocked. 2021;22:100504. doi: 10.1016/j.imu.2020.100504. Epub 2020 Dec 23.
6
Multitarget studies of , family against SARS-CoV-2 supported by molecular dynamics simulation.
J Biomol Struct Dyn. 2022 Jun;40(9):4062-4072. doi: 10.1080/07391102.2020.1852964. Epub 2020 Dec 15.
7
Biflavonoids from as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach.
J Biomol Struct Dyn. 2022 Jul;40(10):4376-4388. doi: 10.1080/07391102.2020.1858165. Epub 2020 Dec 10.
8
Supporting SARS-CoV-2 Papain-Like Protease Drug Discovery: Methods and Benchmarking.
Front Chem. 2020 Nov 5;8:592289. doi: 10.3389/fchem.2020.592289. eCollection 2020.
9
Structural insights into SARS-CoV-2 proteins.
J Mol Biol. 2021 Jan 22;433(2):166725. doi: 10.1016/j.jmb.2020.11.024. Epub 2020 Nov 24.
10
Structural and functional insights into non-structural proteins of coronaviruses.
Microb Pathog. 2021 Jan;150:104641. doi: 10.1016/j.micpath.2020.104641. Epub 2020 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验