Suppr超能文献

候选 DNA 甲基化癌症驱动基因的发现。

Discovery of Candidate DNA Methylation Cancer Driver Genes.

机构信息

Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York.

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York.

出版信息

Cancer Discov. 2021 Sep;11(9):2266-2281. doi: 10.1158/2159-8290.CD-20-1334. Epub 2021 May 10.

Abstract

Epigenetic alterations, such as promoter hypermethylation, may drive cancer through tumor suppressor gene inactivation. However, we have limited ability to differentiate driver DNA methylation (DNAme) changes from passenger events. We developed DNAme driver inference-MethSig-accounting for the varying stochastic hypermethylation rate across the genome and between samples. We applied MethSig to bisulfite sequencing data of chronic lymphocytic leukemia (CLL), multiple myeloma, ductal carcinoma , glioblastoma, and to methylation array data across 18 tumor types in TCGA. MethSig resulted in well-calibrated quantile-quantile plots and reproducible inference of likely DNAme drivers with increased sensitivity/specificity compared with benchmarked methods. CRISPR/Cas9 knockout of selected candidate CLL DNAme drivers provided a fitness advantage with and without therapeutic intervention. Notably, DNAme driver risk score was closely associated with adverse outcome in independent CLL cohorts. Collectively, MethSig represents a novel inference framework for DNAme driver discovery to chart the role of aberrant DNAme in cancer. SIGNIFICANCE: MethSig provides a novel statistical framework for the analysis of DNA methylation changes in cancer, to specifically identify candidate DNA methylation driver genes of cancer progression and relapse, empowering the discovery of epigenetic mechanisms that enhance cancer cell fitness..

摘要

表观遗传改变,如启动子过度甲基化,可能通过肿瘤抑制基因失活导致癌症。然而,我们区分驱动性 DNA 甲基化(DNAme)改变和乘客事件的能力有限。我们开发了 DNAme 驱动推断-MethSig-考虑了基因组和样本之间不同的随机超甲基化率。我们将 MethSig 应用于慢性淋巴细胞白血病(CLL)、多发性骨髓瘤、导管癌、胶质母细胞瘤的亚硫酸氢盐测序数据,以及 TCGA 中 18 种肿瘤类型的甲基化阵列数据。与经过基准测试的方法相比,MethSig 产生了良好校准的分位数-分位数图,并可重复推断可能的 DNAme 驱动因素,提高了灵敏度/特异性。CRISPR/Cas9 敲除选定的候选 CLL DNAme 驱动基因在有和没有治疗干预的情况下提供了适应性优势。值得注意的是,DNAme 驱动风险评分与独立的 CLL 队列中的不良预后密切相关。总之,MethSig 代表了一种新的用于 DNAme 驱动发现的推断框架,以阐明异常 DNAme 在癌症中的作用。意义:MethSig 为癌症中 DNA 甲基化变化的分析提供了一种新的统计框架,用于特异性识别癌症进展和复发的候选 DNA 甲基化驱动基因,增强了对增强癌细胞适应性的表观遗传机制的发现。

相似文献

1
Discovery of Candidate DNA Methylation Cancer Driver Genes.
Cancer Discov. 2021 Sep;11(9):2266-2281. doi: 10.1158/2159-8290.CD-20-1334. Epub 2021 May 10.
2
A novel subtype to predict prognosis and treatment response with DNA driver methylation-transcription in ovarian cancer.
Epigenomics. 2022 Sep;14(18):1073-1088. doi: 10.2217/epi-2022-0206. Epub 2022 Oct 5.
4
The application of epiphenotyping approaches to DNA methylation array studies of the human placenta.
Epigenetics Chromatin. 2023 Oct 4;16(1):37. doi: 10.1186/s13072-023-00507-5.
6
Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact.
Semin Cancer Biol. 2018 Aug;51:1-11. doi: 10.1016/j.semcancer.2018.02.001. Epub 2018 Feb 7.
7
Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia.
Blood. 2010 Jan 14;115(2):296-305. doi: 10.1182/blood-2009-07-232868. Epub 2009 Nov 6.
8
Uncovering the DNA methylome in chronic lymphocytic leukemia.
Epigenetics. 2013 Feb;8(2):138-48. doi: 10.4161/epi.23439. Epub 2013 Jan 15.

引用本文的文献

3
Innovative technologies and their clinical prospects for early lung cancer screening.
Clin Exp Med. 2025 Jun 18;25(1):212. doi: 10.1007/s10238-025-01752-6.
5
YEATS2: a novel cancer epigenetic reader and potential therapeutic target.
Cancer Cell Int. 2025 Apr 26;25(1):162. doi: 10.1186/s12935-025-03797-9.
6
Plasma methylated as a non-invasive biomarker for diagnostic modeling of hepatocellular carcinoma.
Front Med (Lausanne). 2025 Apr 2;12:1571737. doi: 10.3389/fmed.2025.1571737. eCollection 2025.
7
Chronic Lymphocytic Leukemia: 2025 Update on the Epidemiology, Pathogenesis, Diagnosis, and Therapy.
Am J Hematol. 2025 Mar;100(3):450-480. doi: 10.1002/ajh.27546. Epub 2025 Jan 28.
8
Identification of ALDH7A1 as a DNA-methylation-driven gene in lung squamous cell carcinoma.
Ann Med. 2025 Dec;57(1):2442529. doi: 10.1080/07853890.2024.2442529. Epub 2024 Dec 23.
9
Disrupting CENP-N mediated SEPT9 methylation as a strategy to inhibit aerobic glycolysis and liver metastasis in colorectal cancer.
Clin Exp Metastasis. 2024 Dec;41(6):971-988. doi: 10.1007/s10585-024-10316-z. Epub 2024 Oct 19.
10
On correlative and causal links of replicative epimutations.
Trends Genet. 2025 Jan;41(1):60-75. doi: 10.1016/j.tig.2024.08.008. Epub 2024 Sep 16.

本文引用的文献

1
RBBP8/CtIP suppresses P21 expression by interacting with CtBP and BRCA1 in gastric cancer.
Oncogene. 2020 Feb;39(6):1273-1289. doi: 10.1038/s41388-019-1060-7. Epub 2019 Oct 21.
2
Methylation Dynamics of and Its Impact on Cancer.
Cancers (Basel). 2019 Jul 9;11(7):959. doi: 10.3390/cancers11070959.
3
Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features.
Science. 2019 Jun 28;364(6447). doi: 10.1126/science.aaw2872.
4
Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions.
N Engl J Med. 2019 Jun 6;380(23):2225-2236. doi: 10.1056/NEJMoa1815281. Epub 2019 Jun 4.
5
CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing.
Nucleic Acids Res. 2019 Jul 2;47(W1):W171-W174. doi: 10.1093/nar/gkz365.
7
TLR Signaling Is Activated in Lymph Node-Resident CLL Cells and Is Only Partially Inhibited by Ibrutinib.
Cancer Res. 2019 Jan 15;79(2):360-371. doi: 10.1158/0008-5472.CAN-18-0781. Epub 2018 Nov 29.
8
DNA methylation and de-methylation using hybrid site-targeting proteins.
Genome Biol. 2018 Nov 6;19(1):187. doi: 10.1186/s13059-018-1566-2.
9
The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space.
Nat Med. 2018 Oct;24(10):1611-1624. doi: 10.1038/s41591-018-0156-x. Epub 2018 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验