Suppr超能文献

使用 Seq-Scope 进行空间转录组的显微镜检查。

Microscopic examination of spatial transcriptome using Seq-Scope.

机构信息

Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.

出版信息

Cell. 2021 Jun 24;184(13):3559-3572.e22. doi: 10.1016/j.cell.2021.05.010. Epub 2021 Jun 10.

Abstract

Spatial barcoding technologies have the potential to reveal histological details of transcriptomic profiles; however, they are currently limited by their low resolution. Here, we report Seq-Scope, a spatial barcoding technology with a resolution comparable to an optical microscope. Seq-Scope is based on a solid-phase amplification of randomly barcoded single-molecule oligonucleotides using an Illumina sequencing platform. The resulting clusters annotated with spatial coordinates are processed to expose RNA-capture moiety. These RNA-capturing barcoded clusters define the pixels of Seq-Scope that are ∼0.5-0.8 μm apart from each other. From tissue sections, Seq-Scope visualizes spatial transcriptome heterogeneity at multiple histological scales, including tissue zonation according to the portal-central (liver), crypt-surface (colon) and inflammation-fibrosis (injured liver) axes, cellular components including single-cell types and subtypes, and subcellular architectures of nucleus and cytoplasm. Seq-Scope is quick, straightforward, precise, and easy-to-implement and makes spatial single-cell analysis accessible to a wide group of biomedical researchers.

摘要

空间条形码技术有可能揭示转录组图谱的组织学细节;然而,它们目前受到分辨率低的限制。在这里,我们报告了 Seq-Scope,这是一种空间条形码技术,其分辨率可与光学显微镜相媲美。Seq-Scope 基于使用 Illumina 测序平台对随机条形码单分子寡核苷酸进行固相扩增。用空间坐标注释的所得簇被处理以暴露 RNA 捕获部分。这些 RNA 捕获条形码簇定义了 Seq-Scope 的像素,彼此之间的距离约为 0.5-0.8 μm。从组织切片中,Seq-Scope 可以在多个组织学尺度上可视化空间转录组异质性,包括根据门脉中心(肝脏)、隐窝表面(结肠)和炎症纤维化(受损肝脏)轴的组织分区、包括单细胞类型和亚型在内的细胞成分,以及核和细胞质的亚细胞结构。Seq-Scope 快速、直接、精确、易于实施,使广泛的生物医学研究人员能够进行空间单细胞分析。

相似文献

1
Microscopic examination of spatial transcriptome using Seq-Scope.
Cell. 2021 Jun 24;184(13):3559-3572.e22. doi: 10.1016/j.cell.2021.05.010. Epub 2021 Jun 10.
2
Computational solutions for spatial transcriptomics.
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.
7
A spatial vascular transcriptomic, proteomic, and phosphoproteomic atlas unveils an angiocrine Tie-Wnt signaling axis in the liver.
Dev Cell. 2021 Jun 7;56(11):1677-1693.e10. doi: 10.1016/j.devcel.2021.05.001. Epub 2021 May 25.
8
Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in mammalian tissue sections.
Nat Protoc. 2018 Nov;13(11):2501-2534. doi: 10.1038/s41596-018-0045-2.
9
Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics.
Nat Rev Genet. 2021 Oct;22(10):627-644. doi: 10.1038/s41576-021-00370-8. Epub 2021 Jun 18.

引用本文的文献

1
Spatial Multiplexing and Omics.
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00330-6. Epub 2024 Aug 1.
2
Single-cell spatial transcriptomics unravels the cellular landscape of abdominal aortic aneurysm.
JCI Insight. 2025 Aug 22;10(16). doi: 10.1172/jci.insight.190534.
4
Toti-N-glycan Recognition Enables Universal Multiplexed Single-Nucleus RNA Sequencing.
Research (Wash D C). 2025 Apr 22;8:0678. doi: 10.34133/research.0678. eCollection 2025.
5
Deciphering spatially confined immune evasion niches in osteosarcoma with 3-D spatial transcriptomics: a literature review.
Front Oncol. 2025 Jul 16;15:1640645. doi: 10.3389/fonc.2025.1640645. eCollection 2025.
6
New insights into liver injury and regeneration from single-cell transcriptomics.
eGastroenterology. 2025 Jul 23;3(3):e100202. doi: 10.1136/egastro-2025-100202. eCollection 2025.
10
Comparison of spatial transcriptomics technologies using tumor cryosections.
Genome Biol. 2025 Jun 20;26(1):176. doi: 10.1186/s13059-025-03624-4.

本文引用的文献

1
SM-Omics is an automated platform for high-throughput spatial multi-omics.
Nat Commun. 2022 Feb 10;13(1):795. doi: 10.1038/s41467-022-28445-y.
3
Method of the Year: spatially resolved transcriptomics.
Nat Methods. 2021 Jan;18(1):9-14. doi: 10.1038/s41592-020-01033-y.
4
Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2.
Nat Biotechnol. 2021 Mar;39(3):313-319. doi: 10.1038/s41587-020-0739-1. Epub 2020 Dec 7.
5
High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue.
Cell. 2020 Dec 10;183(6):1665-1681.e18. doi: 10.1016/j.cell.2020.10.026. Epub 2020 Nov 13.
6
Holistic characterization of single-hepatocyte transcriptome responses to high-fat diet.
Am J Physiol Endocrinol Metab. 2021 Feb 1;320(2):E244-E258. doi: 10.1152/ajpendo.00391.2020. Epub 2020 Oct 26.
7
Evolution and new frontiers of histology in bio-medical research.
Microsc Res Tech. 2021 Feb;84(2):217-237. doi: 10.1002/jemt.23579. Epub 2020 Sep 11.
8
Seamless integration of image and molecular analysis for spatial transcriptomics workflows.
BMC Genomics. 2020 Jul 14;21(1):482. doi: 10.1186/s12864-020-06832-3.
9
Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration.
Bioessays. 2020 Oct;42(10):e1900221. doi: 10.1002/bies.201900221. Epub 2020 May 4.
10
Polyploidy in liver development, homeostasis and disease.
Nat Rev Gastroenterol Hepatol. 2020 Jul;17(7):391-405. doi: 10.1038/s41575-020-0284-x. Epub 2020 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验