Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA.
Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
Environ Health Perspect. 2021 Jun;129(6):65001. doi: 10.1289/EHP7980. Epub 2021 Jun 14.
Despite a vast air pollution epidemiology literature to date and the recognition that lower-socioeconomic status (SES) populations are often disproportionately exposed to pollution, there is little research identifying optimal means of adjusting for confounding by SES in air pollution epidemiology, nor is there a strong understanding of biases that may result from improper adjustment.
We aim to provide a conceptualization of SES and a review of approaches to its measurement in the U.S. context and discuss pathways by which SES may influence health and confound effects of air pollution. We explore bias related to measurement and operationalization and identify statistical approaches to reduce bias and confounding.
Drawing on the social epidemiology, health geography, and economic literatures, we describe how SES, a multifaceted construct operating through myriad pathways, may be conceptualized and operationalized in air pollution epidemiology studies. SES varies across individuals within the contexts of place, time, and culture. Although no single variable or index can fully capture SES, many studies rely on only a single measure. We recommend examining multiple facets of SES appropriate to the study design. Furthermore, investigators should carefully consider the multiple mechanisms by which SES might be operating to identify those SES indicators that may be most appropriate for a given context or study design and assess the impact of improper adjustment on air pollution effect estimates. Last, exploring model contraction and expansion methods may enrich adjustment, whereas statistical approaches, such as quantitative bias analysis, may be used to evaluate residual confounding. https://doi.org/10.1289/EHP7980.
尽管迄今为止已有大量关于空气污染流行病学的文献,并且人们认识到较低社会经济地位(SES)人群往往更容易受到污染的影响,但很少有研究能够确定在空气污染流行病学中调整 SES 混杂的最佳方法,也不太了解由于不当调整可能导致的偏差。
我们旨在提供 SES 的概念化,并回顾美国背景下 SES 的测量方法,并讨论 SES 可能影响健康和混淆空气污染影响的途径。我们探讨了与测量和操作相关的偏差,并确定了减少偏差和混杂的统计方法。
我们借鉴社会流行病学、健康地理学和经济学文献,描述了 SES 作为一个多方面的结构,通过多种途径,可能在空气污染流行病学研究中被概念化和操作化。SES 在个体所处的地点、时间和文化背景下存在差异。虽然没有单一的变量或指数可以完全捕捉 SES,但许多研究只依赖于单一的指标。我们建议根据研究设计检查 SES 的多个方面。此外,调查人员应仔细考虑 SES 可能发挥作用的多种机制,以确定在特定背景或研究设计下最适合的 SES 指标,并评估不当调整对空气污染效应估计的影响。最后,探索模型收缩和扩展方法可能会丰富调整,而统计方法,如定量偏差分析,可以用于评估剩余混杂。