Suppr超能文献

小型玉米杂交育种计划中基因组辅助预测的优化:路线图综述

Optimizing Genomic-Enabled Prediction in Small-Scale Maize Hybrid Breeding Programs: A Roadmap Review.

作者信息

Fritsche-Neto Roberto, Galli Giovanni, Borges Karina Lima Reis, Costa-Neto Germano, Alves Filipe Couto, Sabadin Felipe, Lyra Danilo Hottis, Morais Pedro Patric Pinho, Braatz de Andrade Luciano Rogério, Granato Italo, Crossa Jose

机构信息

Laboratory of Allogamous Plant Breeding, Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil.

Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.

出版信息

Front Plant Sci. 2021 Jul 1;12:658267. doi: 10.3389/fpls.2021.658267. eCollection 2021.

Abstract

The usefulness of genomic prediction (GP) for many animal and plant breeding programs has been highlighted for many studies in the last 20 years. In maize breeding programs, mostly dedicated to delivering more highly adapted and productive hybrids, this approach has been proved successful for both large- and small-scale breeding programs worldwide. Here, we present some of the strategies developed to improve the accuracy of GP in tropical maize, focusing on its use under low budget and small-scale conditions achieved for most of the hybrid breeding programs in developing countries. We highlight the most important outcomes obtained by the University of São Paulo (USP, Brazil) and how they can improve the accuracy of prediction in tropical maize hybrids. Our roadmap starts with the efforts for germplasm characterization, moving on to the practices for mating design, and the selection of the genotypes that are used to compose the training population in field phenotyping trials. Factors including population structure and the importance of non-additive effects (dominance and epistasis) controlling the desired trait are also outlined. Finally, we explain how the source of the molecular markers, environmental, and the modeling of genotype-environment interaction can affect the accuracy of GP. Results of 7 years of research in a public maize hybrid breeding program under tropical conditions are discussed, and with the great advances that have been made, we find that what is yet to come is exciting. The use of open-source software for the quality control of molecular markers, implementing GP, and envirotyping pipelines may reduce costs in an efficient computational manner. We conclude that exploring new models/tools using high-throughput phenotyping data along with large-scale envirotyping may bring more resolution and realism when predicting genotype performances. Despite the initial costs, mostly for genotyping, the GP platforms in combination with these other data sources can be a cost-effective approach for predicting the performance of maize hybrids for a large set of growing conditions.

摘要

在过去20年里,许多研究都强调了基因组预测(GP)对众多动植物育种计划的实用性。在主要致力于培育适应性更强、产量更高的杂交种的玉米育种计划中,这种方法已在全球范围内的大规模和小规模育种计划中被证明是成功的。在此,我们介绍了一些为提高热带玉米基因组预测准确性而制定的策略,重点关注其在发展中国家大多数杂交育种计划所实现的低预算和小规模条件下的应用。我们强调了圣保罗大学(巴西)取得的最重要成果,以及这些成果如何提高热带玉米杂交种预测的准确性。我们的路线图始于种质特征鉴定工作,接着是交配设计实践,以及在田间表型试验中选择用于构成训练群体的基因型。还概述了包括群体结构以及控制目标性状的非加性效应(显性和上位性)的重要性等因素。最后,我们解释了分子标记的来源、环境以及基因型 - 环境互作的建模如何影响基因组预测的准确性。讨论了在热带条件下一个公共玉米杂交育种计划7年的研究结果,鉴于已取得的巨大进展,我们发现未来令人期待。使用开源软件进行分子标记的质量控制、实施基因组预测以及环境分型流程,可能会以高效的计算方式降低成本。我们得出结论,利用高通量表型数据以及大规模环境分型探索新的模型/工具,在预测基因型表现时可能会带来更高的分辨率和现实性。尽管初期成本主要用于基因分型,但基因组预测平台与这些其他数据源相结合,对于预测大量生长条件下玉米杂交种的表现可能是一种具有成本效益的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f34d/8281958/360ac37e45a6/fpls-12-658267-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验