Suppr超能文献

使用深度学习和 Rosetta 在 CASP14 中进行蛋白质三级结构预测和精修。

Protein tertiary structure prediction and refinement using deep learning and Rosetta in CASP14.

机构信息

Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington, USA.

Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA.

出版信息

Proteins. 2021 Dec;89(12):1722-1733. doi: 10.1002/prot.26194. Epub 2021 Aug 17.

Abstract

The trRosetta structure prediction method employs deep learning to generate predicted residue-residue distance and orientation distributions from which 3D models are built. We sought to improve the method by incorporating as inputs (in addition to sequence information) both language model embeddings and template information weighted by sequence similarity to the target. We also developed a refinement pipeline that recombines models generated by template-free and template utilizing versions of trRosetta guided by the DeepAccNet accuracy predictor. Both benchmark tests and CASP results show that the new pipeline is a considerable improvement over the original trRosetta, and it is faster and requires less computing resources, completing the entire modeling process in a median < 3 h in CASP14. Our human group improved results with this pipeline primarily by identifying additional homologous sequences for input into the network. We also used the DeepAccNet accuracy predictor to guide Rosetta high-resolution refinement for submissions in the regular and refinement categories; although performance was quite good on a CASP relative scale, the overall improvements were rather modest in part due to missing inter-domain or inter-chain contacts.

摘要

trRosetta 结构预测方法利用深度学习从预测的残基-残基距离和方向分布中构建 3D 模型。我们试图通过将语言模型嵌入和模板信息(根据与目标的序列相似性加权)作为输入(除序列信息外)来改进该方法。我们还开发了一个细化管道,该管道由无模板和模板版本的 trRosetta 生成的模型引导,由 DeepAccNet 准确性预测器指导。基准测试和 CASP 结果都表明,新的管道相对于原始 trRosetta 有了显著的改进,并且速度更快,所需的计算资源更少,在 CASP14 中完成整个建模过程的中位数时间<3 小时。我们的人类小组通过识别更多的同源序列并将其输入到网络中,从而利用此管道来提高结果。我们还使用 DeepAccNet 准确性预测器来指导 Rosetta 进行高分辨率细化,以提交常规和细化类别中的内容;尽管在 CASP 相对尺度上性能非常好,但总体改进相当有限,部分原因是缺少域间或链间接触。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ced/9544363/a7cd6bfdb87c/PROT-89-1722-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验