Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
Neurotherapeutics. 2021 Oct;18(4):2200-2221. doi: 10.1007/s13311-021-01125-3. Epub 2021 Sep 30.
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
自 19 世纪和 20 世纪初的 Waller 和 Cajal 以来,实验室创伤性周围神经损伤研究为轴突变性和施万细胞(周围神经的主要神经胶质细胞类型)反应的细胞和分子机制提供了重要的见解。现在很明显,损伤诱导的轴突变性和施万细胞损伤特异性状态(修复施万细胞)的途径与许多遗传性和获得性周围神经疾病有关。这篇综述及时更新了对轴突变性和修复施万细胞形成的分子理解。我们讨论了烟酰胺单核苷酸腺嘌呤二核苷酸转移酶 2(NMNAT2)和无菌α TIR 基序包含蛋白 1(SARM1)如何分别需要轴突存活和变性,转录因子 c-JUN 对施万细胞对神经损伤的反应是必不可少的,以及每个对疾病机制和潜在治疗方法的意义。人类与 NMNAT2 和 SARM1 的遗传关联强烈表明,多神经病和运动神经元疾病中分别存在异常激活的程序性轴突死亡,动物研究表明更广泛的参与,包括化疗诱导和糖尿病性神经病。在修复施万细胞中,cJUN 在广泛的人类获得性和遗传性神经病中异常表达。动物模型表明,它限制了遗传和创伤性神经病中的轴突丢失,而相反,施万细胞分泌的神经调节蛋白 1 型 1 则在 CMT1A 中驱动洋葱球病理。最后,我们讨论了基于药物和基因治疗的机会,以防止轴突丢失或操纵修复施万细胞状态,以治疗获得性和遗传性神经病和神经元病。