Suppr超能文献

通过高度语境化的语言表示自动评估认知行为治疗会话的质量。

Automated quality assessment of cognitive behavioral therapy sessions through highly contextualized language representations.

机构信息

Signal Analysis and Interpretation Lab, University of Southern California, Los Angeles, CA, United States of America.

Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States of America.

出版信息

PLoS One. 2021 Oct 22;16(10):e0258639. doi: 10.1371/journal.pone.0258639. eCollection 2021.

Abstract

During a psychotherapy session, the counselor typically adopts techniques which are codified along specific dimensions (e.g., 'displays warmth and confidence', or 'attempts to set up collaboration') to facilitate the evaluation of the session. Those constructs, traditionally scored by trained human raters, reflect the complex nature of psychotherapy and highly depend on the context of the interaction. Recent advances in deep contextualized language models offer an avenue for accurate in-domain linguistic representations which can lead to robust recognition and scoring of such psychotherapy-relevant behavioral constructs, and support quality assurance and supervision. In this work, we propose a BERT-based model for automatic behavioral scoring of a specific type of psychotherapy, called Cognitive Behavioral Therapy (CBT), where prior work is limited to frequency-based language features and/or short text excerpts which do not capture the unique elements involved in a spontaneous long conversational interaction. The model focuses on the classification of therapy sessions with respect to the overall score achieved on the widely-used Cognitive Therapy Rating Scale (CTRS), but is trained in a multi-task manner in order to achieve higher interpretability. BERT-based representations are further augmented with available therapy metadata, providing relevant non-linguistic context and leading to consistent performance improvements. We train and evaluate our models on a set of 1,118 real-world therapy sessions, recorded and automatically transcribed. Our best model achieves an F1 score equal to 72.61% on the binary classification task of low vs. high total CTRS.

摘要

在心理治疗过程中,治疗师通常会采用特定维度(例如“表现出热情和自信”或“试图建立合作”)的技术来促进治疗过程的评估。这些传统上由经过训练的人类评估员评分的结构反映了心理治疗的复杂性,并高度依赖于互动的背景。最近在深度上下文语言模型方面的进展为准确的领域内语言表示提供了途径,这可以实现对这些与心理治疗相关的行为结构的稳健识别和评分,并支持质量保证和监督。在这项工作中,我们提出了一种基于 BERT 的模型,用于自动对特定类型的心理治疗(称为认知行为疗法)进行行为评分,而之前的工作仅限于基于频率的语言特征和/或短文本摘录,这些特征和摘录无法捕捉到自发的长对话互动中涉及的独特元素。该模型侧重于根据广泛使用的认知治疗评分量表 (CTRS) 获得的总体评分对治疗会议进行分类,但以多任务方式进行训练,以实现更高的可解释性。基于 BERT 的表示形式进一步用可用的治疗元数据进行增强,提供相关的非语言上下文,并导致一致的性能改进。我们在一组 1118 个真实世界的治疗会话上进行了训练和评估,这些会话是经过记录和自动转录的。我们的最佳模型在低与高总 CTRS 的二进制分类任务上的 F1 得分为 72.61%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d622/8535177/47b71260b156/pone.0258639.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验