Gibson James, Atkins David C, Creed Torrey, Imel Zac, Georgiou Panayiotis, Narayanan Shrikanth
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA.
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA.
IEEE Trans Affect Comput. 2022 Jan-Mar;13(1):508-518. doi: 10.1109/taffc.2019.2952113. Epub 2019 Nov 8.
We propose a methodology for estimating human behaviors in psychotherapy sessions using mutli-label and multi-task learning paradigms. We discuss the problem of behavioral coding in which data of human interactions is the annotated with labels to describe relevant human behaviors of interest. We describe two related, yet distinct, corpora consisting of therapist client interactions in psychotherapy sessions. We experimentally compare the proposed learning approaches for estimating behaviors of interest in these datasets. Specifically, we compare single and multiple label learning approaches, single and multiple task learning approaches, and evaluate the performance of these approaches when incorporating turn context. We demonstrate the prediction performance gains which can be achieved by using the proposed paradigms and discuss the insights these models provide into these complex interactions.
我们提出了一种使用多标签和多任务学习范式来估计心理治疗会话中人类行为的方法。我们讨论了行为编码问题,在该问题中,人类互动数据被标注标签以描述感兴趣的相关人类行为。我们描述了两个相关但不同的语料库,它们由心理治疗会话中的治疗师-客户互动组成。我们通过实验比较了所提出的用于估计这些数据集中感兴趣行为的学习方法。具体来说,我们比较了单标签和多标签学习方法、单任务和多任务学习方法,并评估了在纳入轮次上下文时这些方法的性能。我们展示了使用所提出的范式可以实现的预测性能提升,并讨论了这些模型对这些复杂互动所提供的见解。