Suppr超能文献

DNA 甲基化特征表明,不同组合的转录因子特异性指定人类免疫细胞的表观遗传身份。

DNA methylation signatures reveal that distinct combinations of transcription factors specify human immune cell epigenetic identity.

机构信息

Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

出版信息

Immunity. 2021 Nov 9;54(11):2465-2480.e5. doi: 10.1016/j.immuni.2021.10.001. Epub 2021 Oct 26.

Abstract

Epigenetic reprogramming underlies specification of immune cell lineages, but patterns that uniquely define immune cell types and the mechanisms by which they are established remain unclear. Here, we identified lineage-specific DNA methylation signatures of six immune cell types from human peripheral blood and determined their relationship to other epigenetic and transcriptomic patterns. Sites of lineage-specific hypomethylation were associated with distinct combinations of transcription factors in each cell type. By contrast, sites of lineage-specific hypermethylation were restricted mostly to adaptive immune cells. PU.1 binding sites were associated with lineage-specific hypo- and hypermethylation in different cell types, suggesting that it regulates DNA methylation in a context-dependent manner. These observations indicate that innate and adaptive immune lineages are specified by distinct epigenetic mechanisms via combinatorial and context-dependent use of key transcription factors. The cell-specific epigenomics and transcriptional patterns identified serve as a foundation for future studies on immune dysregulation in diseases and aging.

摘要

表观遗传重编程是免疫细胞谱系特化的基础,但独特定义免疫细胞类型的模式以及它们建立的机制仍不清楚。在这里,我们从人外周血中鉴定了六种免疫细胞类型的谱系特异性 DNA 甲基化特征,并确定了它们与其他表观遗传和转录组模式的关系。谱系特异性低甲基化的位点与每种细胞类型中独特的转录因子组合相关。相比之下,谱系特异性高甲基化的位点主要局限于适应性免疫细胞。PU.1 结合位点与不同细胞类型中的谱系特异性低甲基化和高甲基化相关,表明它以依赖于上下文的方式调节 DNA 甲基化。这些观察结果表明,先天和适应性免疫谱系是通过组合和依赖于上下文的关键转录因子的使用来通过不同的表观遗传机制来指定的。鉴定出的细胞特异性表观基因组学和转录组学模式为未来研究疾病和衰老中的免疫失调奠定了基础。

相似文献

1
DNA methylation signatures reveal that distinct combinations of transcription factors specify human immune cell epigenetic identity.
Immunity. 2021 Nov 9;54(11):2465-2480.e5. doi: 10.1016/j.immuni.2021.10.001. Epub 2021 Oct 26.
4
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
5
Distinct Epigenetic Effects of Tobacco Smoking in Whole Blood and among Leukocyte Subtypes.
PLoS One. 2016 Dec 9;11(12):e0166486. doi: 10.1371/journal.pone.0166486. eCollection 2016.
6
DNA methylation trajectories during innate and adaptive immune responses of human B lymphocytes.
Immunology. 2023 Jul;169(3):344-357. doi: 10.1111/imm.13632. Epub 2023 Mar 7.
7
Epigenetic regulation of the lineage specificity of primary human dermal lymphatic and blood vascular endothelial cells.
Angiogenesis. 2021 Feb;24(1):67-82. doi: 10.1007/s10456-020-09743-9. Epub 2020 Sep 12.
8
Epigenetics: An opportunity to shape innate and adaptive immune responses.
Immunology. 2022 Dec;167(4):451-470. doi: 10.1111/imm.13571. Epub 2022 Sep 26.
10
DNA methylation as a transcriptional regulator of the immune system.
Transl Res. 2019 Feb;204:1-18. doi: 10.1016/j.trsl.2018.08.001. Epub 2018 Aug 9.

引用本文的文献

1
DNA methylation and transcription factor-driven immune subtypes in ovarian cancer.
Discov Oncol. 2025 Aug 28;16(1):1646. doi: 10.1007/s12672-025-02630-z.
2
PU.1 regulation of type 1 dendritic cell function via NF-κB pathway in inhibition of non-small cell lung cancer progression.
J Pharm Anal. 2025 Jul;15(7):101154. doi: 10.1016/j.jpha.2024.101154. Epub 2024 Nov 22.
6
Development of an epigenetic clock resistant to changes in immune cell composition.
Commun Biol. 2024 Aug 2;7(1):934. doi: 10.1038/s42003-024-06609-4.
9
Genome-wide DNA methylation-analysis of blastic plasmacytoid dendritic cell neoplasm identifies distinct molecular features.
Leukemia. 2024 May;38(5):1086-1098. doi: 10.1038/s41375-024-02240-8. Epub 2024 Apr 10.
10
Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications.
Nat Rev Cancer. 2024 May;24(5):338-355. doi: 10.1038/s41568-024-00680-z. Epub 2024 Apr 8.

本文引用的文献

1
How transcription factors drive choice of the T cell fate.
Nat Rev Immunol. 2021 Mar;21(3):162-176. doi: 10.1038/s41577-020-00426-6. Epub 2020 Sep 11.
3
DNA methylation disruption reshapes the hematopoietic differentiation landscape.
Nat Genet. 2020 Apr;52(4):378-387. doi: 10.1038/s41588-020-0595-4. Epub 2020 Mar 23.
5
Pioneer and nonpioneer factor cooperation drives lineage specific chromatin opening.
Nat Commun. 2019 Aug 23;10(1):3807. doi: 10.1038/s41467-019-11791-9.
6
TET Enzymes and 5hmC in Adaptive and Innate Immune Systems.
Front Immunol. 2019 Feb 12;10:210. doi: 10.3389/fimmu.2019.00210. eCollection 2019.
8
Transcriptional control of natural killer cell differentiation.
Immunology. 2019 Feb;156(2):111-119. doi: 10.1111/imm.13017. Epub 2018 Nov 18.
9
Epigenome-wide analysis reveals specific DNA hypermethylation of T cells during human hematopoietic differentiation.
Epigenomics. 2018 Jul;10(7):903-923. doi: 10.2217/epi-2017-0163. Epub 2018 Apr 5.
10
Innate-like CD8+ T-cells and NK cells: converging functions and phenotypes.
Immunology. 2018 Mar 14;154(4):547-56. doi: 10.1111/imm.12925.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验