Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
J Comput Chem. 2022 Jan 30;43(3):160-169. doi: 10.1002/jcc.26779. Epub 2021 Oct 30.
AutoDock Vina (Vina) achieved a very high docking-success rate, , but give a rather low correlation coefficient, , for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand-binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. is affected more by changing the gauss2 and rotation than other terms. The docking-success rate is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment compared with obtained by the original Vina and by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving for 32/48 targets, compared with the default package, giving for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient ( ) than the default package ( ) and Vina version 1.2 ( ). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand-binding affinity using Autodock Vina.
AutoDock Vina(Vina)的对接成功率非常高, ,但与实验相比,结合亲和力的相关系数较低, 。这种低相关性可能成为对接模拟中配体结合亲和力排序的障碍。在这种情况下,我们评估了 Vina R 系数对其经验参数的依赖性。 受改变 gauss2 和旋转的影响大于其他术语。对接成功率 对 gauss1、gauss2、排斥和氢键参数的改变很敏感。根据我们的基准测试,建议使用参数集 1 作为最理想的选择。对 800 多个复合物的测试研究表明,与原始 Vina 和 Vina 版本 1.2 相比,修改后的 Vina 与实验的相关性更高, 。此外,与默认软件包相比,修改后的 Vina 可以更广泛地应用,给出 对于 32/48 个目标,而默认软件包给出 对于 31/48 个目标。此外,对来自 PDBbind 2019 版本的 refined structures 的 1036 个复合物的验证计算表明,参数集 1 给出的相关系数( )高于默认软件包( )和 Vina 版本 1.2( )。可以从 https://github.com/sontungngo/mvina 下载带 set1 参数的 Vina 版本。结果将增强使用 Autodock Vina 进行配体结合亲和力排序的能力。