Suppr超能文献

脂质纳米颗粒-mRNA 制剂在治疗中的应用。

Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.

机构信息

Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

Acc Chem Res. 2021 Dec 7;54(23):4283-4293. doi: 10.1021/acs.accounts.1c00550. Epub 2021 Nov 18.

Abstract

After decades of extensive fundamental studies and clinical trials, lipid nanoparticles (LNPs) have demonstrated effective mRNA delivery such as the Moderna and Pfizer-BioNTech vaccines fighting against COVID-19. Moreover, researchers and clinicians have been investigating mRNA therapeutics for a variety of therapeutic indications including protein replacement therapy, genome editing, and cancer immunotherapy. To realize these therapeutics in the clinic, there are many formidable challenges. First, novel delivery systems such as LNPs with high delivery efficiency and low toxicity need to be developed for different cell types. Second, mRNA molecules need to be engineered for improved pharmaceutical properties. Lastly, the LNP-mRNA nanoparticle formulations need to match their therapeutic applications.In this Account, we summarize our recent advances in the design and development of various classes of lipids and lipid derivatives, which can be formulated with multiple types of mRNA molecules to treat diverse diseases. For example, we conceived a series of ionizable lipid-like molecules based on the structures of a benzene core, an amide linker, and hydrophobic tails. We identified ,,-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide (TT3) as a lead compound for mRNA delivery both and . Moreover, we tuned the biodegradability of these lipid-like molecules by introducing branched ester or linear ester chains. Meanwhile, inspired by biomimetic compounds, we synthesized vitamin-derived lipids, chemotherapeutic conjugated lipids, phospholipids, and glycolipids. These scaffolds greatly broaden the chemical space of ionizable lipids for mRNA delivery. In another section, we highlight our efforts on the research direction of mRNA engineering. We previously optimized mRNA chemistry using chemically-modified nucleotides to increase the protein expression, such as pseudouridine (ψ), 5-methoxyuridine (5moU), and -methylpseudouridine (meψ). Also, we engineered the sequences of mRNA 5' untranslated regions (5'-UTRs) and 3' untranslated regions (3'-UTRs), which dramatically enhanced protein expression. With the progress of LNP development and mRNA engineering, we consolidate these technologies and apply them to treat diseases such as genetic disorders, infectious diseases, and cancers. For instance, TT3 and its analog-derived lipid-like nanoparticles can effectively deliver factor IX or VIII mRNA and recover the clotting activity in hemophilia mouse models. Engineered mRNAs encoding SARS-CoV-2 antigens serve well as vaccine candidates against COVID-19. Vitamin-derived lipid nanoparticles loaded with antimicrobial peptide-cathepsin B mRNA enable adoptive macrophage transfer to treat multidrug resistant bacterial sepsis. Biomimetic lipids such as phospholipids formulated with mRNAs encoding costimulatory receptors lead to enhanced cancer immunotherapy.Overall, lipid-mRNA nanoparticle formulations have considerably benefited public health in the COVID-19 pandemic. To expand their applications in clinical use, research work from many disciplines such as chemistry, engineering, materials, pharmaceutical sciences, and medicine need to be integrated. With these collaborative efforts, we believe that more and more lipid-mRNA nanoparticle formulations will enter the clinic in the near future and benefit human health.

摘要

经过几十年的广泛基础研究和临床试验,脂质纳米颗粒(LNPs)已经证明了其在有效传递 mRNA 方面的作用,例如 Moderna 和辉瑞-生物技术公司对抗 COVID-19 的疫苗。此外,研究人员和临床医生一直在研究用于各种治疗适应症的 mRNA 疗法,包括蛋白质替代疗法、基因组编辑和癌症免疫疗法。为了在临床上实现这些治疗方法,存在许多艰巨的挑战。首先,需要开发具有高效递药效率和低毒性的新型递药系统,如 LNPs,用于不同的细胞类型。其次,需要对 mRNA 分子进行工程改造,以提高其药学性质。最后,LNP-mRNA 纳米颗粒制剂需要与其治疗应用相匹配。在本述评中,我们总结了我们在设计和开发各种类别的脂质和脂质衍生物方面的最新进展,这些脂质和脂质衍生物可以与多种类型的 mRNA 分子一起用于治疗多种疾病。例如,我们基于苯核、酰胺连接子和疏水尾部的结构,构思了一系列可离子化的类脂质分子。我们确定,,-三(3-(二肉豆蔻酰基氨基)丙基)苯-1,3,5-三甲酰胺(TT3)是一种用于 和 的 mRNA 递送的先导化合物。此外,我们通过引入支化酯或线性酯链来调节这些类脂质分子的生物降解性。同时,受仿生化合物的启发,我们合成了维生素衍生的脂质、化疗偶联脂质、磷脂和糖脂。这些支架极大地拓宽了用于 mRNA 递送的可离子化脂质的化学空间。在另一部分,我们强调了我们在 mRNA 工程研究方向上的努力。我们之前使用化学修饰的核苷酸优化了 mRNA 化学,例如假尿嘧啶(ψ)、5-甲氧基尿嘧啶(5moU)和 -甲基假尿嘧啶(meψ),以提高蛋白表达。此外,我们还对 mRNA 5'非翻译区(5'-UTR)和 3'非翻译区(3'-UTR)的序列进行了工程改造,这极大地提高了蛋白表达水平。随着 LNP 发展和 mRNA 工程的进步,我们整合了这些技术并将其应用于治疗遗传性疾病、传染病和癌症等疾病。例如,TT3 及其类似物衍生的类脂质纳米颗粒可以有效地递送因子 IX 或 VIII mRNA,并恢复血友病小鼠模型中的凝血活性。编码 SARS-CoV-2 抗原的工程化 mRNA 作为 COVID-19 的疫苗候选物效果良好。载有抗菌肽-组织蛋白酶 B mRNA 的维生素衍生的脂质纳米颗粒能够进行适应性巨噬细胞转移以治疗多药耐药性细菌败血症。载有共刺激受体编码 mRNA 的仿生脂质,如磷脂,可增强癌症免疫疗法。总的来说,脂质-mRNA 纳米颗粒制剂在 COVID-19 大流行中极大地造福了公众健康。为了扩大其在临床应用中的应用,需要整合化学、工程、材料、制药科学和医学等多个学科的研究工作。通过这些合作努力,我们相信,未来会有越来越多的脂质-mRNA 纳米颗粒制剂进入临床并造福人类健康。

相似文献

1
Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.
Acc Chem Res. 2021 Dec 7;54(23):4283-4293. doi: 10.1021/acs.accounts.1c00550. Epub 2021 Nov 18.
2
Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.
Acc Chem Res. 2021 Nov 2;54(21):4001-4011. doi: 10.1021/acs.accounts.1c00500. Epub 2021 Oct 20.
3
From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases.
Acta Biomater. 2021 Sep 1;131:16-40. doi: 10.1016/j.actbio.2021.06.023. Epub 2021 Jun 18.
4
Chemistry of Lipid Nanoparticles for RNA Delivery.
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.
5
Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines.
ACS Nano. 2022 Nov 22;16(11):18936-18950. doi: 10.1021/acsnano.2c07822. Epub 2022 Oct 21.
6
Lipid nanoparticle-based mRNA candidates elicit potent T cell responses.
Biomater Sci. 2023 Jan 31;11(3):964-974. doi: 10.1039/d2bm01581a.
7
Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy.
J Control Release. 2024 Aug;372:113-140. doi: 10.1016/j.jconrel.2024.06.023. Epub 2024 Jun 15.
8
Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
Eur J Pharm Sci. 2022 Sep 1;176:106234. doi: 10.1016/j.ejps.2022.106234. Epub 2022 Jun 8.
9
An overview of lipid constituents in lipid nanoparticle mRNA delivery systems.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Jul-Aug;16(4):e1978. doi: 10.1002/wnan.1978.
10
Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length.
J Biomed Mater Res A. 2024 Sep;112(9):1494-1505. doi: 10.1002/jbm.a.37705. Epub 2024 Mar 15.

引用本文的文献

1
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy.
Biosensors (Basel). 2025 Aug 4;15(8):504. doi: 10.3390/bios15080504.
2
The Overlooked Stereoisomers of the Ionizable Lipid ALC315.
J Am Chem Soc. 2025 Aug 13;147(32):28595-28600. doi: 10.1021/jacs.5c08345. Epub 2025 Jul 31.
3
Engineered lipid nanoparticles with synergistic dendritic cell targeting and enhanced endosomal escape for boosted mRNA cancer vaccines.
Mater Today Bio. 2025 Jul 19;34:102107. doi: 10.1016/j.mtbio.2025.102107. eCollection 2025 Oct.
4
Endo/Lysosomal-Escapable Lipid Nanoparticle Platforms for Enhancing mRNA Delivery in Cancer Therapy.
Pharmaceutics. 2025 Jun 20;17(7):803. doi: 10.3390/pharmaceutics17070803.
7
New Transferrin Receptor-Targeting Conjugate Effectively Delivers DNA to Mouse Brain.
Angew Chem Int Ed Engl. 2025 Jun 10;64(24):e202500247. doi: 10.1002/anie.202500247. Epub 2025 Apr 10.
8
Enhanced Antitumor Immunity Through T Cell Activation with Optimized Tandem Double-OX40L mRNAs.
Int J Nanomedicine. 2025 Mar 19;20:3607-3621. doi: 10.2147/IJN.S479434. eCollection 2025.
9
Lipid Nanoparticles for mRNA Delivery in Cancer Immunotherapy.
AAPS J. 2025 Mar 18;27(3):66. doi: 10.1208/s12248-025-01051-8.
10
mRNA lipid nanoparticle formulation, characterization and evaluation.
Nat Protoc. 2025 Mar 11. doi: 10.1038/s41596-024-01134-4.

本文引用的文献

1
Advances of nanomaterials-based strategies for fighting against COVID-19.
View (Beijing). 2021 Aug;2(4):20200180. doi: 10.1002/VIW.20200180. Epub 2021 May 5.
2
Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs.
Nat Biomed Eng. 2021 Sep;5(9):1059-1068. doi: 10.1038/s41551-021-00786-x. Epub 2021 Oct 6.
3
Lipid nanoparticles for mRNA delivery.
Nat Rev Mater. 2021;6(12):1078-1094. doi: 10.1038/s41578-021-00358-0. Epub 2021 Aug 10.
5
Modular Lipid Nanoparticle Platform Technology for siRNA and Lipophilic Prodrug Delivery.
Small. 2021 Sep;17(37):e2103025. doi: 10.1002/smll.202103025. Epub 2021 Aug 1.
6
Lipids and Lipid Derivatives for RNA Delivery.
Chem Rev. 2021 Oct 27;121(20):12181-12277. doi: 10.1021/acs.chemrev.1c00244. Epub 2021 Jul 19.
7
Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles.
Biomaterials. 2021 Aug;275:120966. doi: 10.1016/j.biomaterials.2021.120966. Epub 2021 Jun 10.
8
mRNA vaccine for cancer immunotherapy.
Mol Cancer. 2021 Feb 25;20(1):41. doi: 10.1186/s12943-021-01335-5.
9
Ionizable lipid nanoparticles for in utero mRNA delivery.
Sci Adv. 2021 Jan 13;7(3). doi: 10.1126/sciadv.aba1028. Print 2021 Jan.
10
Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.
N Engl J Med. 2021 Feb 4;384(5):403-416. doi: 10.1056/NEJMoa2035389. Epub 2020 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验