An Sile, Li Xiangning, Deng Lei, Zhao Peilin, Ding Zhangheng, Han Yutong, Luo Yue, Liu Xin, Li Anan, Luo Qingming, Feng Zhao, Gong Hui
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, China.
Front Neuroanat. 2021 Dec 23;15:818242. doi: 10.3389/fnana.2021.818242. eCollection 2021.
The glutamatergic and GABAergic neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) mediated diverse brain functions. However, their whole-brain neural connectivity has not been comprehensively mapped. Here we used the virus tracers to characterize the whole-brain inputs and outputs of glutamatergic and GABAergic neurons in VTA and SNc. We found that these neurons received similar inputs from upstream brain regions, but some quantitative differences were also observed. Neocortex and dorsal striatum provided a greater share of input to VTA glutamatergic neurons. Periaqueductal gray and lateral hypothalamic area preferentially innervated VTA GABAergic neurons. Specifically, superior colliculus provided the largest input to SNc glutamatergic neurons. Compared to input patterns, the output patterns of glutamatergic and GABAergic neurons in the VTA and SNc showed significant preference to different brain regions. Our results laid the anatomical foundation for understanding the functions of cell-type-specific neurons in VTA and SNc.
腹侧被盖区(VTA)和黑质致密部(SNc)中的谷氨酸能神经元和γ-氨基丁酸能神经元介导多种脑功能。然而,它们的全脑神经连接尚未得到全面绘制。在这里,我们使用病毒示踪剂来表征VTA和SNc中谷氨酸能神经元和γ-氨基丁酸能神经元的全脑输入和输出。我们发现这些神经元从上游脑区接收相似的输入,但也观察到一些数量上的差异。新皮层和背侧纹状体为VTA谷氨酸能神经元提供了更大比例的输入。导水管周围灰质和外侧下丘脑区优先支配VTAγ-氨基丁酸能神经元。具体而言,上丘为SNc谷氨酸能神经元提供了最大的输入。与输入模式相比,VTA和SNc中谷氨酸能神经元和γ-氨基丁酸能神经元的输出模式对不同脑区表现出明显的偏好。我们的结果为理解VTA和SNc中细胞类型特异性神经元的功能奠定了解剖学基础。