Luedemann Max, Stadler Daniela, Cheng Cho-Chin, Protzer Ulrike, Knolle Percy A, Donakonda Sainitin
Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
Institute of Virology, School of Medicine, TUM, Germany.
Comput Struct Biotechnol J. 2022;20:799-811. doi: 10.1016/j.csbj.2022.01.024. Epub 2022 Jan 29.
Drug-repurposing has been instrumental to identify drugs preventing SARS-CoV-2 replication or attenuating the disease course of COVID-19. Here, we identify through structure-based drug-repurposing a dual-purpose inhibitor of SARS-CoV-2 infection and of IL-6 production by immune cells. We created a computational structure model of the receptor binding domain (RBD) of the SARS-CoV-2 spike 1 protein, and used this model for screening against a library of 6171 molecularly defined binding-sites from drug molecules. Molecular dynamics simulation of candidate molecules with high RBD binding-scores in docking analysis predicted montelukast, an antagonist of the cysteinyl-leukotriene-receptor, to disturb the RBD structure, and infection experiments demonstrated inhibition of SARS-CoV-2 infection, although montelukast binding was outside the ACE2-binding site. Molecular dynamics simulation of SARS-CoV-2 variant RBDs correctly predicted interference of montelukast with infection by the beta but not the more infectious alpha variant. With distinct binding sites for RBD and the leukotriene receptor, montelukast also prevented SARS-CoV-2-induced IL-6 release from immune cells. The inhibition of SARS-CoV-2 infection through a molecule binding distal to the ACE-binding site of the RBD points towards an allosteric mechanism that is not conserved in the more infectious alpha and delta SARS-CoV-2 variants.
药物再利用对于识别预防SARS-CoV-2复制或减轻COVID-19病程的药物起到了重要作用。在此,我们通过基于结构的药物再利用鉴定出一种对SARS-CoV-2感染和免疫细胞产生IL-6具有双重抑制作用的抑制剂。我们构建了SARS-CoV-2刺突1蛋白受体结合域(RBD)的计算结构模型,并利用该模型对来自药物分子的6171个分子定义的结合位点文库进行筛选。对接分析中对RBD结合分数高的候选分子进行分子动力学模拟预测,半胱氨酰白三烯受体拮抗剂孟鲁司特会干扰RBD结构,感染实验证明其对SARS-CoV-2感染有抑制作用,尽管孟鲁司特的结合位点在ACE2结合位点之外。对SARS-CoV-2变异体RBD的分子动力学模拟正确预测了孟鲁司特对β变异体感染的干扰,但对传染性更强的α变异体无效。由于RBD和白三烯受体具有不同的结合位点,孟鲁司特还可防止SARS-CoV-2诱导免疫细胞释放IL-6。通过与RBD的ACE结合位点远端结合分子来抑制SARS-CoV-2感染,这表明存在一种变构机制,而这种机制在传染性更强的α和δ SARS-CoV-2变异体中并不保守。