Suppr超能文献

蛋白二硫键异构酶(PDI)通过自噬溶酶体途径负调控埃博拉病毒结构糖蛋白在内质网(ER)中的表达。

Protein disulfide isomerases (PDIs) negatively regulate ebolavirus structural glycoprotein expression in the endoplasmic reticulum (ER) via the autophagy-lysosomal pathway.

机构信息

CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

MSD (Ningbo) Animal Health Technology Co., Ltd, Ningbo, China.

出版信息

Autophagy. 2022 Oct;18(10):2350-2367. doi: 10.1080/15548627.2022.2031381. Epub 2022 Feb 7.

Abstract

Zaire ebolavirus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates with high morbidity and mortality. EBOV infection is dependent on its structural glycoprotein (GP), but high levels of GP expression also trigger cell rounding, detachment, and downregulation of many surface molecules that is thought to contribute to its high pathogenicity. Thus, EBOV has evolved an RNA editing mechanism to reduce its GP expression and increase its fitness. We now report that the GP expression is also suppressed at the protein level in cells by protein disulfide isomerases (PDIs). Although PDIs promote oxidative protein folding by catalyzing correct disulfide formation in the endoplasmic reticulum (ER), PDIA3/ERp57 adversely triggered the GP misfolding by targeting GP cysteine residues and activated the unfolded protein response (UPR). Abnormally folded GP was targeted by ER-associated protein degradation (ERAD) machinery and, unexpectedly, was degraded via the macroautophagy/autophagy-lysosomal pathway, but not the proteasomal pathway. PDIA3 also decreased the GP expression from other ebolavirus species but increased the GP expression from Marburg virus (MARV), which is consistent with the observation that MARV-GP does not cause cell rounding and detachment, and MARV does not regulate its GP expression via RNA editing during infection. Furthermore, five other PDIs also had a similar inhibitory activity to EBOV-GP. Thus, PDIs negatively regulate ebolavirus glycoprotein expression, which balances the viral life cycle by maximizing their infection but minimizing their cellular effect. We suggest that ebolaviruses hijack the host protein folding and ERAD machinery to increase their fitness via reticulophagy during infection. 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; ACTB: β-actin; ATF: activating transcription factor; ATG: autophagy-related; BafA1: bafilomycin A; BDBV: ebolavirus; CALR: calreticulin; CANX: calnexin; CHX: cycloheximide; CMA: chaperone-mediated autophagy; ConA: concanamycin A; CRISPR: clusters of regularly interspaced short palindromic repeats; Cas9: CRISPR-associated protein 9; dsRNA: double-stranded RNA; EBOV: ebolavirus; EDEM: ER degradation enhancing alpha-mannosidase like protein; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; Env: envelope glycoprotein; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GP: glycoprotein; HA: hemagglutinin; HDAC6: histone deacetylase 6; HMM: high-molecular-mass; HIV-1: human immunodeficiency virus type 1; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IAV: influenza A virus; IP: immunoprecipitation; KIF: kifenesine; Lac: lactacystin; LAMP: lysosomal associated membrane protein; MAN1B1/ERManI: mannosidase alpha class 1B member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARV: Marburg virus; MLD: mucin-like domain; NHK/SERPINA1: alpha1-antitrypsin variant null (Hong Kong); NTZ: nitazoxanide; PDI: protein disulfide isomerase; RAVV: Ravn virus; RESTV: Reston ebolavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SBOV: ebolavirus; sGP: soluble GP; SQSTM1/p62: sequestosome 1; ssGP: small soluble GP; TAFV: Taï Forest ebolavirus; TIZ: tizoxanide; TGN: thapsigargin; TLD: TXN (thioredoxin)-like domain; Ub: ubiquitin; UPR: unfolded protein response; VLP: virus-like particle; VSV: vesicular stomatitis virus; WB: Western blotting; WT: wild-type; XBP1: X-box binding protein 1.

摘要

扎伊尔埃博拉病毒(EBOV)在人类和非人类灵长类动物中引起严重的出血热,具有高发病率和死亡率。EBOV 感染依赖于其结构糖蛋白(GP),但高水平的 GP 表达也会触发细胞圆化、脱落和许多表面分子的下调,这被认为是其高致病性的原因之一。因此,EBOV 已经进化出一种 RNA 编辑机制来降低其 GP 表达并提高其适应性。我们现在报告,在细胞中,GP 的表达也受到蛋白质二硫键异构酶(PDI)的抑制。尽管 PDIs 通过催化内质网(ER)中正确的二硫键形成来促进氧化蛋白折叠,但 PDIA3/ERp57 通过靶向 GP 半胱氨酸残基并激活未折叠蛋白反应(UPR),意外地触发了 GP 的错误折叠。异常折叠的 GP 被 ER 相关蛋白降解(ERAD)机制靶向,并且出人意料地通过巨自噬/自噬溶酶体途径降解,而不是通过蛋白酶体途径降解。PDIA3 还降低了来自其他埃博拉病毒物种的 GP 表达,但增加了来自马尔堡病毒(MARV)的 GP 表达,这与 MARV-GP 不会引起细胞圆化和脱落的观察结果一致,并且 MARV 在感染过程中不通过 RNA 编辑来调节其 GP 表达。此外,其他五种 PDIs 也对 EBOV-GP 具有类似的抑制活性。因此,PDIs 负调控埃博拉病毒糖蛋白的表达,通过最大限度地提高其感染但最小化其细胞效应来平衡病毒的生命周期。我们建议埃博拉病毒劫持宿主蛋白折叠和 ERAD 机制,通过感染期间的网状自噬来增加其适应性。3-MA:3-甲基腺嘌呤;4-PBA:4-苯基丁酸;ACTB:β-肌动蛋白;ATF:激活转录因子;ATG:自噬相关;BafA1:巴氟胺 A;BDBV:埃博拉病毒;CALR:钙网蛋白;CANX:钙结合蛋白;CHX:环己酰亚胺;CMA:伴侣介导的自噬;ConA:康纳霉素 A;CRISPR:成簇的规律间隔的短回文重复序列;Cas9:CRISPR 相关蛋白 9;dsRNA:双链 RNA;EBOV:埃博拉病毒;EDEM:内质网降解增强的α-甘露糖苷酶样蛋白;EIF2AK3/PERK:真核翻译起始因子 2α激酶 3;Env:包膜糖蛋白;ER:内质网;ERAD:内质网相关蛋白降解;ERN1/IRE1:内质网到细胞核信号 1;GP:糖蛋白;HA:血凝素;HDAC6:组蛋白去乙酰化酶 6;HMM:高分子质量;HIV-1:人类免疫缺陷病毒 1;HSPA5/BiP:热休克蛋白家族 A(Hsp70)成员 5;IAV:流感 A 病毒;IP:免疫沉淀;KIF:基芬辛;Lac:乳酰卡宾;LAMP:溶酶体相关膜蛋白;MAN1B1/ERManI:甘露糖苷酶 α 类 1B 成员 1;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MARV:马尔堡病毒;MLD:黏液样结构域;NHK/SERPINA1:α1-抗胰蛋白酶变体缺失(香港);NTZ:硝唑尼特;PDI:蛋白质二硫键异构酶;RAVV:拉文病毒;RESTV:雷斯顿埃博拉病毒;SARS-CoV:严重急性呼吸综合征冠状病毒;SBV:埃博拉病毒;sGP:可溶性 GP;SQSTM1/p62:自噬体 1;ssGP:小可溶性 GP;TAFV:塔伊森林埃博拉病毒;TIZ:替佐硝唑;TGN:他普西醇;TLD:TXN(硫氧还蛋白)样结构域;Ub:泛素;UPR:未折叠蛋白反应;VLP:病毒样颗粒;VSV:水疱性口炎病毒;WB:Western blotting;WT:野生型;XBP1:X 盒结合蛋白 1。

相似文献

5
AP3B1 facilitates PDIA3/ERP57 function to regulate rabies virus glycoprotein selective degradation and viral entry.
Autophagy. 2024 Dec;20(12):2785-2803. doi: 10.1080/15548627.2024.2390814. Epub 2024 Aug 17.
8
The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB.
Autophagy. 2021 Aug;17(8):1841-1855. doi: 10.1080/15548627.2020.1788889. Epub 2020 Jul 15.
9
WDR45 contributes to neurodegeneration through regulation of ER homeostasis and neuronal death.
Autophagy. 2020 Mar;16(3):531-547. doi: 10.1080/15548627.2019.1630224. Epub 2019 Jun 23.
10
BAG2 ameliorates endoplasmic reticulum stress-induced cell apoptosis in -infected macrophages through selective autophagy.
Autophagy. 2020 Aug;16(8):1453-1467. doi: 10.1080/15548627.2019.1687214. Epub 2019 Nov 11.

引用本文的文献

1
Membralin Selects Foreign Glycoproteins from the Endoplasmic Reticulum to Lysosomes for Degradation.
Res Sq. 2025 Jun 23:rs.3.rs-6498082. doi: 10.21203/rs.3.rs-6498082/v1.
2
Murine Leukemia Virus GlycoGag Antagonizes SERINC5 via ER-phagy Receptor RETREG1.
bioRxiv. 2025 Mar 6:2025.03.06.641798. doi: 10.1101/2025.03.06.641798.
4
Endoplasmic reticulum stress in diseases.
MedComm (2020). 2024 Aug 26;5(9):e701. doi: 10.1002/mco2.701. eCollection 2024 Sep.
5
AP3B1 facilitates PDIA3/ERP57 function to regulate rabies virus glycoprotein selective degradation and viral entry.
Autophagy. 2024 Dec;20(12):2785-2803. doi: 10.1080/15548627.2024.2390814. Epub 2024 Aug 17.
8
The relationship between autophagy and respiratory viruses.
Arch Microbiol. 2024 Mar 4;206(4):136. doi: 10.1007/s00203-024-03838-3.
10
The role of PDIA3 in oral squamous cell carcinoma and its value as A diagnostic and prognostic biomarker.
Heliyon. 2023 Nov 22;9(12):e22596. doi: 10.1016/j.heliyon.2023.e22596. eCollection 2023 Dec.

本文引用的文献

1
HIV-1 Nef interacts with the cyclin K/CDK13 complex to antagonize SERINC5 for optimal viral infectivity.
Cell Rep. 2021 Aug 10;36(6):109514. doi: 10.1016/j.celrep.2021.109514.
2
ER-phagy responses in yeast, plants, and mammalian cells and their crosstalk with UPR and ERAD.
Dev Cell. 2021 Apr 5;56(7):949-966. doi: 10.1016/j.devcel.2021.03.005. Epub 2021 Mar 24.
4
Ebola.
N Engl J Med. 2020 May 7;382(19):1832-1842. doi: 10.1056/NEJMra1901594.
5
Calnexin cycle - structural features of the ER chaperone system.
FEBS J. 2020 Oct;287(20):4322-4340. doi: 10.1111/febs.15330. Epub 2020 Apr 27.
6
Therapeutic strategies to target the Ebola virus life cycle.
Nat Rev Microbiol. 2019 Oct;17(10):593-606. doi: 10.1038/s41579-019-0233-2. Epub 2019 Jul 24.
9
Mechanistic understanding of -glycosylation in Ebola virus glycoprotein maturation and function.
J Biol Chem. 2017 Apr 7;292(14):5860-5870. doi: 10.1074/jbc.M116.768168. Epub 2017 Feb 14.
10
The recognition of ubiquitinated proteins by the proteasome.
Cell Mol Life Sci. 2016 Sep;73(18):3497-506. doi: 10.1007/s00018-016-2255-5. Epub 2016 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验