Suppr超能文献

针对弗林蛋白酶的可行替代策略可破坏 SARS-CoV-2 感染周期。

A Feasible Alternative Strategy Targeting Furin Disrupts SARS-CoV-2 Infection Cycle.

机构信息

Department of Medical Microbiology and Immunology, University of California, Davis, California, USA.

Department of Biochemistry and Molecular Genetics, University of Virginiagrid.27755.32, Charlottesville, Virginia, USA.

出版信息

Microbiol Spectr. 2022 Feb 23;10(1):e0236421. doi: 10.1128/spectrum.02364-21. Epub 2022 Feb 9.

Abstract

The COVID-19 causing coronavirus (SARS-CoV-2) remains a public health threat worldwide. SARS-CoV-2 enters human lung cells via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). Notably, the cleavage of the spike by the host cell protease furin in virus-producing cells is critical for subsequent spike-driven entry into lung cells. Thus, effective targeted therapies blocking the spike cleavage and activation in viral producing cells may provide an alternate strategy to break the viral transmission cycle and to overcome disease pathology. Here we engineered and described an antibody-based targeted strategy, which directly competes with the furin mediated proteolytic activation of the spike in virus-producing cells. The described approach involves engineering competitive furin substrate residues in the IgG1 Fc-extended flexible linker domain of SARS-CoV-2 spike targeting antibodies. Considering the site of spike furin cleavage and SARS-CoV-2 egress remains uncertain, the experimental strategy pursued here revealed novel mechanistic insights into proteolytic processing of the spike protein, which suggest that processing does not occur in the constitutive secretory pathway. Furthermore, our results show blockade of furin-mediated cleavage of the spike protein for membrane fusion activation and virus host-cell entry function. These findings provide an alternate insight of targeting applicability to SARS-CoV-2 and the future coronaviridae family members, exploiting the host protease system to gain cellular entry and subsequent chain of infections. Since its emergence in December 2019, COVID-19 has remained a global economic and health threat. Although RNA and DNA vector-based vaccines induced antibody response and immunological memory have proven highly effective against hospitalization and mortality, their long-term efficacy remains unknown against continuously evolving SARS-CoV-2 variants. As host cell-enriched furin-mediated cleavage of SARS-CoV-2 spike protein is critical for viral entry and chain of the infection cycle, the solution described here of an antibody Fc-conjugated furin competing peptide is significant. In a scenario where spike mutational drifts do not interfere with the Fc-conjugated antibody's epitope, the proposed furin competing strategy confers a broad-spectrum targeting design to impede the production of efficiently transmissible SARS-CoV-2 viral particles. In addition, the proposed approach is plug-and-play against other potentially deadly viruses that exploit secretory pathway independent host protease machinery to gain cellular entry and subsequent transmissions to host cells.

摘要

导致 COVID-19 的冠状病毒(SARS-CoV-2)仍然是全球公共卫生威胁。SARS-CoV-2 通过其刺突糖蛋白与血管紧张素转换酶 2(ACE2)结合进入人肺细胞。值得注意的是,病毒产生细胞中的宿主细胞蛋白酶弗林(furin)切割刺突对于随后的刺突驱动进入肺细胞至关重要。因此,阻断病毒产生细胞中刺突切割和激活的有效靶向治疗可能提供一种替代策略来打破病毒传播周期并克服疾病病理学。在这里,我们设计并描述了一种基于抗体的靶向策略,该策略直接与病毒产生细胞中弗林介导的刺突蛋白的蛋白水解激活竞争。所描述的方法涉及在 SARS-CoV-2 刺突靶向抗体的 IgG1 Fc 扩展柔性接头结构域中设计竞争弗林底物残基。考虑到刺突弗林切割位点和 SARS-CoV-2 逸出仍然不确定,这里追求的实验策略揭示了刺突蛋白蛋白水解加工的新机制见解,表明加工不会发生在组成型分泌途径中。此外,我们的结果表明阻断弗林介导的刺突蛋白切割可阻止膜融合激活和病毒进入宿主细胞的功能。这些发现为靶向 SARS-CoV-2 和未来的冠状病毒科成员提供了替代的靶向适用性见解,利用宿主蛋白酶系统获得细胞进入和随后的感染链。自 2019 年 12 月出现以来,COVID-19 一直是全球经济和健康威胁。尽管基于 RNA 和 DNA 载体的疫苗诱导的抗体反应和免疫记忆已被证明对住院和死亡率非常有效,但它们对不断演变的 SARS-CoV-2 变体的长期疗效尚不清楚。由于 SARS-CoV-2 刺突蛋白的宿主细胞富集弗林介导的切割对于病毒进入和感染周期的链条至关重要,因此这里描述的抗体 Fc 缀合弗林竞争肽的解决方案是重要的。在 Spike 突变漂移不干扰 Fc 缀合抗体表位的情况下,所提出的弗林竞争策略赋予广谱靶向设计以阻止有效传播 SARS-CoV-2 病毒颗粒的产生。此外,该方法针对其他可能致命的病毒具有即插即用的优势,这些病毒利用独立于分泌途径的宿主蛋白酶机制获得细胞进入并随后传播到宿主细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e7/8826744/1d0385290360/spectrum.02364-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验