Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
J Chem Theory Comput. 2022 Mar 8;18(3):1329-1339. doi: 10.1021/acs.jctc.1c01184. Epub 2022 Feb 24.
A new theoretical approach is presented and applied for the simulation of Fe(II) low-spin (LS, singlet, te) → high-spin (HS, quintet, te) photoswitching dynamics of the octahedral model complex [Fe(NCH)]. The utilized synergistic methodology heavily exploits the strengths of complementary electronic structure and spin-vibronic dynamics methods. Specifically, we perform 3D quantum dynamics (QD) and full-dimensional trajectory surface hopping (TSH, in conjunction with a linear vibronic coupling model), with the modes for QD selected by TSH. We follow a hybrid approach which is based on the application of time-dependent density functional theory (TD-DFT) excited-state potential energy surfaces (PESs) and multiconfigurational second-order perturbation theory (CASPT2) spin-orbit couplings (SOCs). Our method delivers accurate singlet-triplet-quintet intersystem crossing (ISC) dynamics, as assessed by comparison to our recent high-level simulations and related time-resolved experimental data. Furthermore, we investigate the capability of our simulations to identify the location of ISCs. Finally, we assess the approximation of constant SOCs (calculated at the Franck-Condon geometry), whose validity has central importance for the combination of TD-DFT PESs and CASPT2 SOCs. This efficient methodology will have a key role in simulating LS → HS dynamics for more complicated cases, involving higher density of states and varying electronic character, as well as the analysis of ultrafast experiments.
提出并应用了一种新的理论方法,用于模拟八面体模型配合物[Fe(NCH)]中 Fe(II)低自旋(LS,单重态,te)→高自旋(HS,五重态,te)光开关动力学。所利用的协同方法在很大程度上利用了互补电子结构和自旋-振动动力学方法的优势。具体来说,我们进行了 3D 量子动力学(QD)和全维轨迹表面跳跃(TSH,与线性振动耦合模型结合),QD 的模式由 TSH 选择。我们采用基于时变密度泛函理论(TD-DFT)激发态势能面(PES)和多组态二级微扰理论(CASPT2)自旋轨道耦合(SOC)的应用的混合方法。我们的方法提供了准确的单重态-三重态-五重态系间窜越(ISC)动力学,通过与我们最近的高水平模拟和相关的时间分辨实验数据进行比较来评估。此外,我们研究了我们的模拟识别 ISC 位置的能力。最后,我们评估了常数 SOC(在 Franck-Condon 几何结构下计算)的近似值,这对于 TD-DFT PES 和 CASPT2 SOC 的组合具有核心重要性。这种高效的方法将在模拟更复杂情况下的 LS→HS 动力学方面发挥关键作用,涉及更高的态密度和变化的电子特性,以及超快实验的分析。