Suppr超能文献

增强的 NCLX 依赖性线粒体钙外流可减轻心力衰竭中的病理性重构。

Enhanced NCLX-dependent mitochondrial Ca efflux attenuates pathological remodeling in heart failure.

机构信息

Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

出版信息

J Mol Cell Cardiol. 2022 Jun;167:52-66. doi: 10.1016/j.yjmcc.2022.03.001. Epub 2022 Mar 28.

Abstract

Mitochondrial calcium (Ca) uptake couples changes in cardiomyocyte energetic demand to mitochondrial ATP production. However, excessive Ca uptake triggers permeability transition and necrosis. Despite these established roles during acute stress, the involvement of Ca signaling in cardiac adaptations to chronic stress remains poorly defined. Changes in NCLX expression are reported in heart failure (HF) patients and models of cardiac hypertrophy. Therefore, we hypothesized that altered Ca homeostasis contributes to the hypertrophic remodeling of the myocardium that occurs upon a sustained increase in cardiac workload. The impact of Ca flux on cardiac function and remodeling was examined by subjecting mice with cardiomyocyte-specific overexpression (OE) of the mitochondrial Na/Ca exchanger (NCLX), the primary mediator of Ca efflux, to several well-established models of hypertrophic and non-ischemic HF. Cardiomyocyte NCLX-OE preserved contractile function, prevented hypertrophy and fibrosis, and attenuated maladaptive gene programs in mice subjected to chronic pressure overload. Hypertrophy was attenuated in NCLX-OE mice, prior to any decline in cardiac contractility. NCLX-OE similarly attenuated deleterious cardiac remodeling in mice subjected to chronic neurohormonal stimulation. However, cardiomyocyte NCLX-OE unexpectedly reduced overall survival in mice subjected to severe neurohormonal stress with angiotensin II + phenylephrine. Adenoviral NCLX expression limited Ca accumulation, oxidative metabolism, and de novo protein synthesis during hypertrophic stimulation of cardiomyocytes in vitro. Our findings provide genetic evidence for the contribution of Ca to early pathological remodeling in non-ischemic heart disease, but also highlight a deleterious consequence of increasing Ca efflux when the heart is subjected to extreme, sustained neurohormonal stress.

摘要

线粒体钙(Ca)摄取将心肌细胞能量需求的变化与线粒体 ATP 产生联系起来。然而,过多的 Ca 摄取会引发通透性转换和坏死。尽管在急性应激期间有这些已确立的作用,但 Ca 信号在心脏对慢性应激的适应中的参与仍未得到明确界定。在心力衰竭(HF)患者和心脏肥大模型中报道了 NCLX 表达的变化。因此,我们假设 Ca 稳态的变化导致心肌肥厚重构,这种重构发生在心脏工作量持续增加时。通过使心肌细胞特异性过表达(OE)线粒体 Na/Ca 交换器(NCLX)的小鼠,即 Ca 外排的主要介质,经受几种已建立的肥厚和非缺血性 HF 模型,研究 Ca 流对心脏功能和重构的影响。在慢性压力超负荷下,心肌细胞 NCLX-OE 保持收缩功能,防止肥大和纤维化,并减弱适应性基因程序。在心肌细胞 NCLX-OE 小鼠中,在心脏收缩功能下降之前,肥大就已经减弱。NCLX-OE 同样减轻了慢性神经激素刺激下的有害心脏重构。然而,出乎意料的是,在严重的神经激素应激下,心肌细胞 NCLX-OE 降低了 Ang II + 苯肾上腺素处理的小鼠的总生存率。腺病毒 NCLX 表达限制了 Ca 积累、氧化代谢和新蛋白质合成,在体外肥大刺激心肌细胞时。我们的研究结果为 Ca 在非缺血性心脏病早期病理重构中的作用提供了遗传证据,但也强调了当心脏受到极端、持续的神经激素应激时,增加 Ca 外排的有害后果。

相似文献

1
Enhanced NCLX-dependent mitochondrial Ca efflux attenuates pathological remodeling in heart failure.
J Mol Cell Cardiol. 2022 Jun;167:52-66. doi: 10.1016/j.yjmcc.2022.03.001. Epub 2022 Mar 28.
2
The mitochondrial Na/Ca exchanger is essential for Ca homeostasis and viability.
Nature. 2017 May 4;545(7652):93-97. doi: 10.1038/nature22082. Epub 2017 Apr 26.
3
TMEM65 regulates NCLX-dependent mitochondrial calcium efflux.
bioRxiv. 2023 Oct 9:2023.10.06.561062. doi: 10.1101/2023.10.06.561062.
4
NCLX is an essential component of mitochondrial Na+/Ca2+ exchange.
Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):436-41. doi: 10.1073/pnas.0908099107. Epub 2009 Dec 15.
5
MCU gain- and loss-of-function models define the duality of mitochondrial calcium uptake in heart failure.
bioRxiv. 2023 Apr 18:2023.04.17.537222. doi: 10.1101/2023.04.17.537222.
7
Physiological and Pathophysiological Roles of Mitochondrial Na-Ca Exchanger, NCLX, in Hearts.
Biomolecules. 2021 Dec 14;11(12):1876. doi: 10.3390/biom11121876.
9
Functional properties and mode of regulation of the mitochondrial Na/Ca exchanger, NCLX.
Semin Cell Dev Biol. 2019 Oct;94:59-65. doi: 10.1016/j.semcdb.2019.01.009. Epub 2019 Jan 30.
10
Elevated MCU Expression by CaMKIIδB Limits Pathological Cardiac Remodeling.
Circulation. 2022 Apr 5;145(14):1067-1083. doi: 10.1161/CIRCULATIONAHA.121.055841. Epub 2022 Feb 15.

引用本文的文献

1
Structure and mechanism of the mitochondrial calcium transporter NCLX.
Nature. 2025 Sep 10. doi: 10.1038/s41586-025-09491-0.
2
Mitophagy in Hypertensive Cardiac Hypertrophy: Mechanisms and Therapeutic Implications.
J Clin Hypertens (Greenwich). 2025 Aug;27(8):e70127. doi: 10.1111/jch.70127.
3
Integrated Systems Biology Identifies Disruptions in Mitochondrial Function and Metabolism as Key Contributors to HFpEF.
JACC Basic Transl Sci. 2025 Aug 15;10(9):101334. doi: 10.1016/j.jacbts.2025.101334.
4
TMEM65 regulates and is required for NCLX-dependent mitochondrial calcium efflux.
Nat Metab. 2025 Apr;7(4):714-729. doi: 10.1038/s42255-025-01250-9. Epub 2025 Apr 8.
7
Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease.
Nat Cardiovasc Res. 2024 May;3(5):500-514. doi: 10.1038/s44161-024-00463-7. Epub 2024 May 1.
8
Mitochondrial calcium signaling and redox homeostasis in cardiac health and disease.
Front Mol Med. 2023 Aug 23;3:1235188. doi: 10.3389/fmmed.2023.1235188. eCollection 2023.
9
Mitochondrial Ca Uniporter-Dependent Energetic Dysfunction Drives Hypertrophy in Heart Failure.
JACC Basic Transl Sci. 2024 Apr 22;9(4):496-518. doi: 10.1016/j.jacbts.2024.01.007. eCollection 2024 Apr.
10
TMEM65 regulates NCLX-dependent mitochondrial calcium efflux.
bioRxiv. 2023 Oct 9:2023.10.06.561062. doi: 10.1101/2023.10.06.561062.

本文引用的文献

1
Mitochondrial calcium exchange in physiology and disease.
Physiol Rev. 2022 Apr 1;102(2):893-992. doi: 10.1152/physrev.00041.2020. Epub 2021 Oct 26.
2
Is the Failing Heart Starved of Mitochondrial Calcium?
Circ Res. 2021 Apr 16;128(8):1205-1207. doi: 10.1161/CIRCRESAHA.121.319030. Epub 2021 Apr 15.
3
MCU Overexpression Rescues Inotropy and Reverses Heart Failure by Reducing SR Ca Leak.
Circ Res. 2021 Apr 16;128(8):1191-1204. doi: 10.1161/CIRCRESAHA.120.318562. Epub 2021 Feb 1.
4
The debate continues - What is the role of MCU and mitochondrial calcium uptake in the heart?
J Mol Cell Cardiol. 2020 Jun;143:163-174. doi: 10.1016/j.yjmcc.2020.04.029. Epub 2020 Apr 27.
5
Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis.
Circ Res. 2020 Jan 17;126(2):182-196. doi: 10.1161/CIRCRESAHA.119.315483. Epub 2019 Nov 11.
6
MCUB Regulates the Molecular Composition of the Mitochondrial Calcium Uniporter Channel to Limit Mitochondrial Calcium Overload During Stress.
Circulation. 2019 Nov 19;140(21):1720-1733. doi: 10.1161/CIRCULATIONAHA.118.037968. Epub 2019 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验