Suppr超能文献

通过有丝分裂维持转录特异性。

Maintaining Transcriptional Specificity Through Mitosis.

机构信息

Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; email:

出版信息

Annu Rev Genomics Hum Genet. 2022 Aug 31;23:53-71. doi: 10.1146/annurev-genom-121321-094603. Epub 2022 Apr 19.

Abstract

Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.

摘要

实际上所有细胞类型都具有相同的 DNA,但每种类型都表现出其自身的细胞特异性基因表达模式。在短暂的有丝分裂期间,染色体表现出蛋白质组成和修饰的变化、明显的浓缩以及随之而来的转录减少。然而,当细胞退出有丝分裂时,它们以高保真度重新激活其细胞特异性程序。最初,该领域专注于在有丝分裂中选择性保留并因此标记染色质的转录因子亚组。然而,最近的研究表明,许多转录因子可以保留在有丝分裂染色质中,而且令人惊讶的是,这种保留可以归因于非特异性染色质结合。在这里,我们回顾了最新的研究,这些研究侧重于通过启动子而不是增强子进行低水平转录,这有助于有丝分裂记忆,以及对染色体结构动力学、组蛋白修饰、细胞周期信号转导和核膜蛋白的新见解,这些共同确保了一轮有丝分裂过程中基因表达的保真度。

相似文献

1
Maintaining Transcriptional Specificity Through Mitosis.
Annu Rev Genomics Hum Genet. 2022 Aug 31;23:53-71. doi: 10.1146/annurev-genom-121321-094603. Epub 2022 Apr 19.
2
A changing paradigm of transcriptional memory propagation through mitosis.
Nat Rev Mol Cell Biol. 2019 Jan;20(1):55-64. doi: 10.1038/s41580-018-0077-z.
3
Epigenetic characteristics of the mitotic chromosome in 1D and 3D.
Crit Rev Biochem Mol Biol. 2017 Apr;52(2):185-204. doi: 10.1080/10409238.2017.1287160. Epub 2017 Feb 15.
4
5
Mitotic chromosome condensation resets chromatin to safeguard transcriptional homeostasis during interphase.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2210593120. doi: 10.1073/pnas.2210593120. Epub 2023 Jan 19.
8
Genome accessibility is widely preserved and locally modulated during mitosis.
Genome Res. 2015 Feb;25(2):213-25. doi: 10.1101/gr.180646.114. Epub 2014 Nov 4.
9
Widespread Mitotic Bookmarking by Histone Marks and Transcription Factors in Pluripotent Stem Cells.
Cell Rep. 2017 May 16;19(7):1283-1293. doi: 10.1016/j.celrep.2017.04.067.
10

引用本文的文献

2
Cis-regulatory chromatin contacts form de novo in the absence of loop extrusion.
bioRxiv. 2025 Feb 8:2025.01.12.632634. doi: 10.1101/2025.01.12.632634.
3
LDB1 establishes multi-enhancer networks to regulate gene expression.
Mol Cell. 2025 Jan 16;85(2):376-393.e9. doi: 10.1016/j.molcel.2024.11.037. Epub 2024 Dec 24.
5
LDB1 establishes multi-enhancer networks to regulate gene expression.
bioRxiv. 2024 Aug 24:2024.08.23.609430. doi: 10.1101/2024.08.23.609430.
6
YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle.
Nat Genet. 2024 Sep;56(9):1938-1952. doi: 10.1038/s41588-024-01871-y. Epub 2024 Aug 29.
7
Genome folding principles uncovered in condensin-depleted mitotic chromosomes.
Nat Genet. 2024 Jun;56(6):1213-1224. doi: 10.1038/s41588-024-01759-x. Epub 2024 May 27.
8
CEBPA restricts alveolar type 2 cell plasticity during development and injury-repair.
Nat Commun. 2024 May 16;15(1):4148. doi: 10.1038/s41467-024-48632-3.
9
CEBPA restricts alveolar type 2 cell plasticity during development and injury-repair.
Res Sq. 2023 Dec 14:rs.3.rs-3521387. doi: 10.21203/rs.3.rs-3521387/v1.
10
Genome folding principles revealed in condensin-depleted mitotic chromosomes.
bioRxiv. 2023 Nov 13:2023.11.09.566494. doi: 10.1101/2023.11.09.566494.

本文引用的文献

1
Topoisomerase 1 activity during mitotic transcription favors the transition from mitosis to G1.
Mol Cell. 2021 Dec 16;81(24):5007-5024.e9. doi: 10.1016/j.molcel.2021.10.015. Epub 2021 Nov 11.
2
RNA promotes the formation of spatial compartments in the nucleus.
Cell. 2021 Nov 11;184(23):5775-5790.e30. doi: 10.1016/j.cell.2021.10.014. Epub 2021 Nov 4.
3
RNA polymerase II is required for spatial chromatin reorganization following exit from mitosis.
Sci Adv. 2021 Oct 22;7(43):eabg8205. doi: 10.1126/sciadv.abg8205.
4
BRD4 orchestrates genome folding to promote neural crest differentiation.
Nat Genet. 2021 Oct;53(10):1480-1492. doi: 10.1038/s41588-021-00934-8. Epub 2021 Oct 5.
5
Regulation of transcription reactivation dynamics exiting mitosis.
PLoS Comput Biol. 2021 Oct 4;17(10):e1009354. doi: 10.1371/journal.pcbi.1009354. eCollection 2021 Oct.
6
EU-RNA-seq for in vivo labeling and high throughput sequencing of nascent transcripts.
STAR Protoc. 2021 Aug 25;2(3):100651. doi: 10.1016/j.xpro.2021.100651. eCollection 2021 Sep 17.
7
CTCF and transcription influence chromatin structure re-configuration after mitosis.
Nat Commun. 2021 Aug 27;12(1):5157. doi: 10.1038/s41467-021-25418-5.
8
Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction.
Mol Cell. 2021 Sep 2;81(17):3509-3525.e5. doi: 10.1016/j.molcel.2021.07.004. Epub 2021 Jul 27.
10
Transcription-mediated supercoiling regulates genome folding and loop formation.
Mol Cell. 2021 Aug 5;81(15):3065-3081.e12. doi: 10.1016/j.molcel.2021.06.009. Epub 2021 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验