Suppr超能文献

迈向神经科学行为分类机器学习的可解释性、透明性和通用性。

Toward the explainability, transparency, and universality of machine learning for behavioral classification in neuroscience.

机构信息

University of Washington, Department of Biological Structure, Seattle, WA, USA; University of Washington, Graduate Program in Neuroscience, Seattle, WA, USA. Electronic address: https://twitter.com/NastaciaGoodwin.

University of Washington, Department of Biological Structure, Seattle, WA, USA. Electronic address: https://twitter.com/nilssonsro.

出版信息

Curr Opin Neurobiol. 2022 Apr;73:102544. doi: 10.1016/j.conb.2022.102544. Epub 2022 Apr 26.

Abstract

The use of rigorous ethological observation via machine learning techniques to understand brain function (computational neuroethology) is a rapidly growing approach that is poised to significantly change how behavioral neuroscience is commonly performed. With the development of open-source platforms for automated tracking and behavioral recognition, these approaches are now accessible to a wide array of neuroscientists despite variations in budget and computational experience. Importantly, this adoption has moved the field toward a common understanding of behavior and brain function through the removal of manual bias and the identification of previously unknown behavioral repertoires. Although less apparent, another consequence of this movement is the introduction of analytical tools that increase the explainabilty, transparency, and universality of the machine-based behavioral classifications both within and between research groups. Here, we focus on three main applications of such machine model explainabilty tools and metrics in the drive toward behavioral (i) standardization, (ii) specialization, and (iii) explainability. We provide a perspective on the use of explainability tools in computational neuroethology, and detail why this is a necessary next step in the expansion of the field. Specifically, as a possible solution in behavioral neuroscience, we propose the use of Shapley values via Shapley Additive Explanations (SHAP) as a diagnostic resource toward explainability of human annotation, as well as supervised and unsupervised behavioral machine learning analysis.

摘要

通过机器学习技术进行严格的行为学观察来理解大脑功能(计算神经行为学)是一种快速发展的方法,有望极大地改变行为神经科学的常规做法。随着自动化跟踪和行为识别的开源平台的发展,尽管预算和计算经验存在差异,这些方法现在也可供广泛的神经科学家使用。重要的是,这种采用通过消除手动偏差和识别以前未知的行为模式,促使该领域朝着对行为和大脑功能的共同理解发展。尽管不太明显,但这一趋势的另一个后果是引入了分析工具,这些工具提高了基于机器的行为分类在研究小组内部和之间的可解释性、透明度和通用性。在这里,我们主要关注机器模型可解释性工具和指标在以下三个方面的应用:行为(i)标准化、(ii)专业化和(iii)可解释性。我们提供了在计算神经行为学中使用可解释性工具的视角,并详细说明了这为什么是该领域扩展的必要下一步。具体来说,作为行为神经科学的一种可能解决方案,我们建议使用 Shapley 值通过 Shapley 加法解释(SHAP)作为人类注释可解释性以及监督和无监督行为机器学习分析的诊断资源。

相似文献

1
Toward the explainability, transparency, and universality of machine learning for behavioral classification in neuroscience.
Curr Opin Neurobiol. 2022 Apr;73:102544. doi: 10.1016/j.conb.2022.102544. Epub 2022 Apr 26.
2
Simple Behavioral Analysis (SimBA) as a platform for explainable machine learning in behavioral neuroscience.
Nat Neurosci. 2024 Jul;27(7):1411-1424. doi: 10.1038/s41593-024-01649-9. Epub 2024 May 22.
3
Rage Against the Machine: Advancing the study of aggression ethology via machine learning.
Psychopharmacology (Berl). 2020 Sep;237(9):2569-2588. doi: 10.1007/s00213-020-05577-x. Epub 2020 Jul 9.
4
Explaining multivariate molecular diagnostic tests via Shapley values.
BMC Med Inform Decis Mak. 2021 Jul 8;21(1):211. doi: 10.1186/s12911-021-01569-9.
6
Advancing social behavioral neuroscience by integrating ethology and comparative psychology methods through machine learning.
Neurosci Biobehav Rev. 2023 Aug;151:105243. doi: 10.1016/j.neubiorev.2023.105243. Epub 2023 May 22.
8
Machine Learning Explainability in Breast Cancer Survival.
Stud Health Technol Inform. 2020 Jun 16;270:307-311. doi: 10.3233/SHTI200172.
9
10
Verifying explainability of a deep learning tissue classifier trained on RNA-seq data.
Sci Rep. 2021 Jan 29;11(1):2641. doi: 10.1038/s41598-021-81773-9.

引用本文的文献

2
Deep neural networks and stochastic methods for cognitive modeling of rat behavioral dynamics in -mazes.
Cogn Neurodyn. 2025 Dec;19(1):66. doi: 10.1007/s11571-025-10247-9. Epub 2025 Apr 25.
3
Identifying major depressive disorder among US adults living alone using stacked ensemble machine learning algorithms.
Front Public Health. 2025 Feb 21;13:1472050. doi: 10.3389/fpubh.2025.1472050. eCollection 2025.
5
Optimized machine learning framework for cardiovascular disease diagnosis: a novel ethical perspective.
BMC Cardiovasc Disord. 2025 Feb 20;25(1):123. doi: 10.1186/s12872-025-04550-w.
8
Correlation analysis and recurrence evaluation system for patients with recurrent hepatolithiasis: a multicentre retrospective study.
Front Digit Health. 2024 Nov 27;6:1510674. doi: 10.3389/fdgth.2024.1510674. eCollection 2024.
9
Machine learning in predicting postoperative complications in Crohn's disease.
World J Gastrointest Surg. 2024 Aug 27;16(8):2745-2747. doi: 10.4240/wjgs.v16.i8.2745.

本文引用的文献

1
Task Programming: Learning Data Efficient Behavior Representations.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2021 Jun;2021:2875-2884. doi: 10.1109/cvpr46437.2021.00290. Epub 2021 Nov 2.
2
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
3
Anipose: A toolkit for robust markerless 3D pose estimation.
Cell Rep. 2021 Sep 28;36(13):109730. doi: 10.1016/j.celrep.2021.109730.
5
Geometric deep learning enables 3D kinematic profiling across species and environments.
Nat Methods. 2021 May;18(5):564-573. doi: 10.1038/s41592-021-01106-6. Epub 2021 Apr 19.
7
Quantifying behavior to understand the brain.
Nat Neurosci. 2020 Dec;23(12):1537-1549. doi: 10.1038/s41593-020-00734-z. Epub 2020 Nov 9.
8
Rage Against the Machine: Advancing the study of aggression ethology via machine learning.
Psychopharmacology (Berl). 2020 Sep;237(9):2569-2588. doi: 10.1007/s00213-020-05577-x. Epub 2020 Jul 9.
9
From Local Explanations to Global Understanding with Explainable AI for Trees.
Nat Mach Intell. 2020 Jan;2(1):56-67. doi: 10.1038/s42256-019-0138-9. Epub 2020 Jan 17.
10
Two Distinct Types of Eye-Head Coupling in Freely Moving Mice.
Curr Biol. 2020 Jun 8;30(11):2116-2130.e6. doi: 10.1016/j.cub.2020.04.042. Epub 2020 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验