Suppr超能文献

一种用于表征HIV-1潜伏库的优化的Tat/Rev诱导有限稀释分析方法。

An Optimized Tat/Rev Induced Limiting Dilution Assay for the Characterization of HIV-1 Latent Reservoirs.

作者信息

Mishra Swarnima, Gohil Yuvrajsinh, Mehta Kavita, D'silva Anish, Amanullah Afzal, Selvam Deepak, Pargain Neelam, Nala Narendra, Sanjeeva G N, Ranga Udaykumar

机构信息

Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India.

Department of Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, India.

出版信息

Bio Protoc. 2022 Apr 20;12(8):e4391. doi: 10.21769/BioProtoc.4391.

Abstract

The administration of antiretroviral therapy (ART) leads to a rapid reduction in plasma viral load in HIV-1 seropositive subjects. However, when ART is suspended, the virus rebounds due to the presence of a latent viral reservoir. Several techniques have been developed to characterize this latent viral reservoir. Of the various assay formats available presently, the Tat/Rev induced limiting dilution assay (TILDA) offers the most robust and technically simple assay strategy. The TILDA formats reported thus far are limited by being selective to one or a few HIV-1 genetic subtypes, thus, restricting them from a broader level application. The novel TILDA, labelled as U-TILDA ('U' for universal), can detect all the major genetic subtypes of HIV-1 unbiasedly, and with comparable sensitivity of detection. U-TILDA is well suited to characterize the latent reservoirs of HIV-1 and aid in the formulation of cure strategies. .

摘要

抗逆转录病毒疗法(ART)的应用可使HIV-1血清阳性受试者的血浆病毒载量迅速降低。然而,当停用ART时,由于潜伏病毒库的存在,病毒会反弹。已经开发了几种技术来表征这种潜伏病毒库。在目前可用的各种检测形式中,Tat/Rev诱导的有限稀释分析(TILDA)提供了最可靠且技术上最简单的检测策略。迄今为止报道的TILDA形式受到对一种或几种HIV-1基因亚型具有选择性的限制,因此,限制了它们在更广泛层面的应用。新型TILDA,标记为U-TILDA(“U”代表通用),可以无偏倚地检测HIV-1的所有主要基因亚型,并且具有相当的检测灵敏度。U-TILDA非常适合表征HIV-1的潜伏库,并有助于制定治愈策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec2/9081478/d05d837989ab/BioProtoc-12-08-4391-ga001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验