Suppr超能文献

一种将PET衍生指标和图像纹理分析与来自GOYA的临床风险因素相结合的预后模型。

A prognostic model integrating PET-derived metrics and image texture analyses with clinical risk factors from GOYA.

作者信息

Kostakoglu Lale, Dalmasso Federico, Berchialla Paola, Pierce Larry A, Vitolo Umberto, Martelli Maurizio, Sehn Laurie H, Trněný Marek, Nielsen Tina G, Bolen Christopher R, Sahin Deniz, Lee Calvin, El-Galaly Tarec Christoffer, Mattiello Federico, Kinahan Paul E, Chauvie Stephane

机构信息

Department of Radiology and Medical Imaging University of Virginia Charlottesville Virginia USA.

Medical Physics Division Santa Croce e Carle Hospital Cuneo Italy.

出版信息

EJHaem. 2022 Mar 24;3(2):406-414. doi: 10.1002/jha2.421. eCollection 2022 May.

Abstract

Image texture analysis (radiomics) uses radiographic images to quantify characteristics that may identify tumour heterogeneity and associated patient outcomes. Using fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT)-derived data, including quantitative metrics, image texture analysis and other clinical risk factors, we aimed to develop a prognostic model that predicts survival in patients with previously untreated diffuse large B-cell lymphoma (DLBCL) from GOYA (NCT01287741). Image texture features and clinical risk factors were combined into a random forest model and compared with the international prognostic index (IPI) for DLBCL based on progression-free survival (PFS) and overall survival (OS) predictions. Baseline FDG-PET scans were available for 1263 patients, 832 patients of these were cell-of-origin (COO)-evaluable. Patients were stratified by IPI or radiomics features plus clinical risk factors into low-, intermediate- and high-risk groups. The random forest model with COO subgroups identified a clearer high-risk population (45% 2-year PFS [95% confidence interval (CI) 40%-52%]; 65% 2-year OS [95% CI 59%-71%]) than the IPI (58% 2-year PFS [95% CI 50%-67%]; 69% 2-year OS [95% CI 62%-77%]). This study confirms that standard clinical risk factors can be combined with PET-derived image texture features to provide an improved prognostic model predicting survival in untreated DLBCL.

摘要

图像纹理分析(放射组学)利用放射影像来量化可能识别肿瘤异质性及相关患者预后的特征。我们利用氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(FDG-PET/CT)得出的数据,包括定量指标、图像纹理分析及其他临床风险因素,旨在建立一个预后模型,以预测来自GOYA(NCT01287741)研究中既往未接受治疗的弥漫性大B细胞淋巴瘤(DLBCL)患者的生存率。将图像纹理特征和临床风险因素纳入随机森林模型,并基于无进展生存期(PFS)和总生存期(OS)预测,与DLBCL的国际预后指数(IPI)进行比较。1263例患者有基线FDG-PET扫描数据,其中832例患者可评估细胞起源(COO)。根据IPI或放射组学特征加临床风险因素将患者分为低、中、高风险组。与IPI(2年PFS为58%[95%置信区间(CI)50%-67%];2年OS为69%[95%CI 62%-77%])相比,具有COO亚组的随机森林模型识别出了更明确的高风险人群(2年PFS为45%[95%CI 40%-52%];2年OS为65%[95%CI 59%-71%])。本研究证实,标准临床风险因素可与PET衍生的图像纹理特征相结合,以提供一个更好的预测未治疗DLBCL患者生存率的预后模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f8a/9175666/6f3b10d91d48/JHA2-3-406-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验