Kostakoglu Lale, Dalmasso Federico, Berchialla Paola, Pierce Larry A, Vitolo Umberto, Martelli Maurizio, Sehn Laurie H, Trněný Marek, Nielsen Tina G, Bolen Christopher R, Sahin Deniz, Lee Calvin, El-Galaly Tarec Christoffer, Mattiello Federico, Kinahan Paul E, Chauvie Stephane
Department of Radiology and Medical Imaging University of Virginia Charlottesville Virginia USA.
Medical Physics Division Santa Croce e Carle Hospital Cuneo Italy.
EJHaem. 2022 Mar 24;3(2):406-414. doi: 10.1002/jha2.421. eCollection 2022 May.
Image texture analysis (radiomics) uses radiographic images to quantify characteristics that may identify tumour heterogeneity and associated patient outcomes. Using fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT)-derived data, including quantitative metrics, image texture analysis and other clinical risk factors, we aimed to develop a prognostic model that predicts survival in patients with previously untreated diffuse large B-cell lymphoma (DLBCL) from GOYA (NCT01287741). Image texture features and clinical risk factors were combined into a random forest model and compared with the international prognostic index (IPI) for DLBCL based on progression-free survival (PFS) and overall survival (OS) predictions. Baseline FDG-PET scans were available for 1263 patients, 832 patients of these were cell-of-origin (COO)-evaluable. Patients were stratified by IPI or radiomics features plus clinical risk factors into low-, intermediate- and high-risk groups. The random forest model with COO subgroups identified a clearer high-risk population (45% 2-year PFS [95% confidence interval (CI) 40%-52%]; 65% 2-year OS [95% CI 59%-71%]) than the IPI (58% 2-year PFS [95% CI 50%-67%]; 69% 2-year OS [95% CI 62%-77%]). This study confirms that standard clinical risk factors can be combined with PET-derived image texture features to provide an improved prognostic model predicting survival in untreated DLBCL.
图像纹理分析(放射组学)利用放射影像来量化可能识别肿瘤异质性及相关患者预后的特征。我们利用氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(FDG-PET/CT)得出的数据,包括定量指标、图像纹理分析及其他临床风险因素,旨在建立一个预后模型,以预测来自GOYA(NCT01287741)研究中既往未接受治疗的弥漫性大B细胞淋巴瘤(DLBCL)患者的生存率。将图像纹理特征和临床风险因素纳入随机森林模型,并基于无进展生存期(PFS)和总生存期(OS)预测,与DLBCL的国际预后指数(IPI)进行比较。1263例患者有基线FDG-PET扫描数据,其中832例患者可评估细胞起源(COO)。根据IPI或放射组学特征加临床风险因素将患者分为低、中、高风险组。与IPI(2年PFS为58%[95%置信区间(CI)50%-67%];2年OS为69%[95%CI 62%-77%])相比,具有COO亚组的随机森林模型识别出了更明确的高风险人群(2年PFS为45%[95%CI 40%-52%];2年OS为65%[95%CI 59%-71%])。本研究证实,标准临床风险因素可与PET衍生的图像纹理特征相结合,以提供一个更好的预测未治疗DLBCL患者生存率的预后模型。