Suppr超能文献

大规模平行池筛选揭示了纳米颗粒递送的基因组决定因素。

Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery.

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Science. 2022 Jul 22;377(6604):eabm5551. doi: 10.1126/science.abm5551.

Abstract

To accelerate the translation of cancer nanomedicine, we used an integrated genomic approach to improve our understanding of the cellular processes that govern nanoparticle trafficking. We developed a massively parallel screen that leverages barcoded, pooled cancer cell lines annotated with multiomic data to investigate cell association patterns across a nanoparticle library spanning a range of formulations with clinical potential. We identified both materials properties and cell-intrinsic features that mediate nanoparticle-cell association. Using machine learning algorithms, we constructed genomic nanoparticle trafficking networks and identified nanoparticle-specific biomarkers. We validated one such biomarker: gene expression of , which inversely predicts lipid-based nanoparticle uptake in vitro and in vivo. Our work establishes the power of integrated screens for nanoparticle delivery and enables the identification and utilization of biomarkers to rationally design nanoformulations.

摘要

为了加速癌症纳米医学的转化,我们采用了一种综合基因组方法,以加深我们对控制纳米颗粒转运的细胞过程的理解。我们开发了一种大规模平行筛选方法,利用带有多组学数据注释的条形码、汇集的癌细胞系,来研究跨越具有临床潜力的一系列制剂的纳米颗粒库的细胞关联模式。我们确定了介导纳米颗粒-细胞关联的材料特性和细胞内在特征。我们使用机器学习算法构建了基因组纳米颗粒转运网络,并鉴定了纳米颗粒特异性生物标志物。我们验证了其中一个生物标志物:基因表达水平,该标志物可反向预测体外和体内基于脂质的纳米颗粒摄取。我们的工作证明了综合筛选在纳米颗粒递送上的强大功能,并使鉴定和利用生物标志物来合理设计纳米制剂成为可能。

相似文献

1
Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery.
Science. 2022 Jul 22;377(6604):eabm5551. doi: 10.1126/science.abm5551.
2
One step closer to cancer nanomedicine.
Science. 2022 Jul 22;377(6604):371-372. doi: 10.1126/science.add3666. Epub 2022 Jul 21.
3
Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
AAPS PharmSciTech. 2020 May 14;21(4):132. doi: 10.1208/s12249-020-01691-3.
4
Recent Patents on Nanoparticles and Nanoformulations for Cancer Therapy.
Recent Pat Drug Deliv Formul. 2016;10(1):11-23. doi: 10.2174/1872211309666150818110846.
5
Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors.
J Control Release. 2015 Dec 10;219:192-204. doi: 10.1016/j.jconrel.2015.08.017. Epub 2015 Aug 12.
6
Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine.
JACS Au. 2021 Nov 23;2(1):12-21. doi: 10.1021/jacsau.1c00313. eCollection 2022 Jan 24.
7
Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine.
Adv Drug Deliv Rev. 2019 Mar 15;143:68-96. doi: 10.1016/j.addr.2019.04.008. Epub 2019 Apr 22.
8
Targeting liposomes toward novel pediatric anticancer therapeutics.
Pediatr Res. 2010 May;67(5):514-9. doi: 10.1203/PDR.0b013e3181d601c5.
9
Nanoparticle-Delivered Chemotherapy: Old Drugs in New Packages.
Oncology (Williston Park). 2017 Mar 15;31(3):198-208.
10
Liposomes and inorganic nanoparticles for drug delivery and cancer imaging.
Ther Deliv. 2012 May;3(5):645-56. doi: 10.4155/tde.12.38.

引用本文的文献

1
Nanoparticle-Based Delivery Strategies for Combating Drug Resistance in Cancer Therapeutics.
Cancers (Basel). 2025 Aug 11;17(16):2628. doi: 10.3390/cancers17162628.
2
Machine Learning and Artificial Intelligence in Nanomedicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jul-Aug;17(4):e70027. doi: 10.1002/wnan.70027.
4
Advancing engineering design strategies for targeted cancer nanomedicine.
Nat Rev Cancer. 2025 Aug 1. doi: 10.1038/s41568-025-00847-2.
6
Intersection of ferroptosis and nanomaterials brings benefits to breast cancer.
Cell Biol Toxicol. 2025 Jul 22;41(1):119. doi: 10.1007/s10565-025-10067-x.
7
Machine Learning-Enhanced Nanoparticle Design for Precision Cancer Drug Delivery.
Adv Sci (Weinh). 2025 Aug;12(30):e03138. doi: 10.1002/advs.202503138. Epub 2025 Jun 19.
8
Developments in nanotechnology approaches for the treatment of solid tumors.
Exp Hematol Oncol. 2025 May 19;14(1):76. doi: 10.1186/s40164-025-00656-1.
9
[Research advances of liposomes and exosomes in drug delivery and biomarker screening].
Se Pu. 2025 May;43(5):472-486. doi: 10.3724/SP.J.1123.2024.08012.

本文引用的文献

1
Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine.
JACS Au. 2021 Nov 23;2(1):12-21. doi: 10.1021/jacsau.1c00313. eCollection 2022 Jan 24.
2
Lipid nanoparticles for mRNA delivery.
Nat Rev Mater. 2021;6(12):1078-1094. doi: 10.1038/s41578-021-00358-0. Epub 2021 Aug 10.
3
Lysosomal SLC46A3 modulates hepatic cytosolic copper homeostasis.
Nat Commun. 2021 Jan 12;12(1):290. doi: 10.1038/s41467-020-20461-0.
4
A metastasis map of human cancer cell lines.
Nature. 2020 Dec;588(7837):331-336. doi: 10.1038/s41586-020-2969-2. Epub 2020 Dec 9.
5
The Gene Ontology resource: enriching a GOld mine.
Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334. doi: 10.1093/nar/gkaa1113.
6
Engineering precision nanoparticles for drug delivery.
Nat Rev Drug Discov. 2021 Feb;20(2):101-124. doi: 10.1038/s41573-020-0090-8. Epub 2020 Dec 4.
7
MFSD12 mediates the import of cysteine into melanosomes and lysosomes.
Nature. 2020 Dec;588(7839):699-704. doi: 10.1038/s41586-020-2937-x. Epub 2020 Nov 18.
8
A framework for designing delivery systems.
Nat Nanotechnol. 2020 Oct;15(10):819-829. doi: 10.1038/s41565-020-0759-5. Epub 2020 Sep 7.
9
Electrostatic Conjugation of Nanoparticle Surfaces with Functional Peptide Motifs.
Bioconjug Chem. 2020 Sep 16;31(9):2211-2219. doi: 10.1021/acs.bioconjchem.0c00384. Epub 2020 Aug 11.
10
Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling.
Nat Cancer. 2020 Feb;1(2):235-248. doi: 10.1038/s43018-019-0018-6. Epub 2020 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验