Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel.
Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel.
Microbiol Spectr. 2022 Aug 31;10(4):e0097322. doi: 10.1128/spectrum.00973-22. Epub 2022 Jul 13.
Antibiotic-resistant microbial pathogens are becoming a major threat to human health. Therefore, there is an urgent need to develop new alternatives to conventional antibiotics. One such promising alternative is antimicrobial peptides (AMPs), which are produced by virtually all organisms and typically inhibit bacteria via membrane disruption. However, previous studies demonstrated that bacteria can rapidly develop AMP resistance. Here, we study whether combination therapy, known to be able to inhibit the evolution of resistance to conventional antibiotics, can also hinder the evolution of AMP resistance. To do so, we evolved the opportunistic pathogen Staphylococcus aureus in the presence of individual AMPs, AMP pairs, and a combinatorial antimicrobial peptide library. Treatment with some AMP pairs indeed hindered the evolution of resistance compared with individual AMPs. In particular, resistance to pairs was delayed when resistance to the individual AMPs came at a cost of impaired bacterial growth and did not confer cross-resistance to other tested AMPs. The lowest level of resistance evolved during treatment with the combinatorial antimicrobial peptide library termed random antimicrobial peptide mixture, which contains more than a million different peptides. A better understanding of how AMP combinations affect the evolution of resistance is a crucial step in order to design "resistant proof" AMP cocktails that will offer a sustainable treatment option for antibiotic-resistant pathogens. The main insights gleaned from this study are the following. (i) AMP combination treatment can delay the evolution of resistance in S. aureus. Treatment with some AMP pairs resulted in significantly lower resistance then treatment with either of the individual AMPs. Treatment with a random AMP library resulted in no detectable resistance. (ii) The rate at which resistance to combination arises correlates with the cost of resistance to individual AMPs and their cross-resistance. In particular, combinations to which the least resistance arose involved AMPs with high fitness cost of resistance and low cross-resistance. (iii) No broad-range AMP resistance evolved. Strains that evolved resistance to some AMPs typically remained sensitive to other AMPs, alleviating concerns regarding the evolution of resistance to immune system AMPs in response to AMP treatment.
抗药性微生物病原体对人类健康构成了重大威胁。因此,迫切需要开发传统抗生素的新替代品。一种有前途的替代品是抗菌肽 (AMPs),几乎所有生物体都会产生这种肽,通常通过破坏细胞膜来抑制细菌。然而,先前的研究表明,细菌可以迅速产生 AMP 耐药性。在这里,我们研究了联合治疗是否能够抑制对抗生素的耐药性的进化,也能抑制 AMP 耐药性的进化。为此,我们在单独的 AMP、AMP 对和组合抗菌肽文库存在的情况下,对机会性病原体金黄色葡萄球菌进行了进化。与单独的 AMP 相比,某些 AMP 对的治疗确实阻碍了耐药性的进化。特别是,当对单个 AMP 的耐药性以损害细菌生长为代价并且不赋予对其他测试的 AMP 的交叉耐药性时,对耐药性的延迟。在称为随机抗菌肽混合物的组合抗菌肽文库的治疗中,进化出的耐药性最低,该文库包含超过一百万种不同的肽。更好地了解 AMP 组合如何影响耐药性的进化是设计“抗耐药性”AMP 鸡尾酒的关键步骤,这将为抗药性病原体提供可持续的治疗选择。从这项研究中得出的主要见解如下。(一)AMP 联合治疗可以延缓金黄色葡萄球菌耐药性的进化。与单独使用任何一种 AMP 相比,使用某些 AMP 对治疗会导致耐药性显著降低。使用随机 AMP 文库治疗未检测到耐药性。(二)对组合产生耐药性的速度与个体 AMP 耐药性的成本及其交叉耐药性相关。特别是,对耐药性最低的组合涉及到具有高耐药性成本和低交叉耐药性的 AMP。(三)没有广谱 AMP 耐药性进化。对某些 AMP 产生耐药性的菌株通常对其他 AMP 保持敏感,减轻了对抗生素治疗中针对免疫系统 AMP 产生耐药性的担忧。