Suppr超能文献

抗菌肽:进化启示下的应用。

Antimicrobial peptides: Application informed by evolution.

机构信息

Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.

MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA.

出版信息

Science. 2020 May 1;368(6490). doi: 10.1126/science.aau5480.

Abstract

Antimicrobial peptides (AMPs) are essential components of immune defenses of multicellular organisms and are currently in development as anti-infective drugs. AMPs have been classically assumed to have broad-spectrum activity and simple kinetics, but recent evidence suggests an unexpected degree of specificity and a high capacity for synergies. Deeper evaluation of the molecular evolution and population genetics of AMP genes reveals more evidence for adaptive maintenance of polymorphism in AMP genes than has previously been appreciated, as well as adaptive loss of AMP activity. AMPs exhibit pharmacodynamic properties that reduce the evolution of resistance in target microbes, and AMPs may synergize with one another and with conventional antibiotics. Both of these properties make AMPs attractive for translational applications. However, if AMPs are to be used clinically, it is crucial to understand their natural biology in order to lessen the risk of collateral harm and avoid the crisis of resistance now facing conventional antibiotics.

摘要

抗菌肽(AMPs)是多细胞生物免疫防御的重要组成部分,目前正在开发为抗感染药物。AMPs 通常被认为具有广谱活性和简单的动力学特性,但最近的证据表明,它们具有出人意料的特异性和高度协同作用的能力。对 AMP 基因的分子进化和群体遗传学的更深入评估表明,与以前的认识相比,AMP 基因的多态性具有更多适应性维持的证据,以及 AMP 活性的适应性丧失。AMPs 表现出降低靶微生物耐药性进化的药效学特性,并且 AMPs 可以相互协同作用,并与传统抗生素协同作用。这两个特性使得 AMPs 成为具有吸引力的转化应用。然而,如果要将 AMPs 用于临床,了解它们的自然生物学是至关重要的,以降低对附带损害的风险,并避免传统抗生素目前面临的耐药危机。

相似文献

1
Antimicrobial peptides: Application informed by evolution.
Science. 2020 May 1;368(6490). doi: 10.1126/science.aau5480.
2
Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics.
Proc Biol Sci. 2018 Mar 14;285(1874). doi: 10.1098/rspb.2017.2687.
4
Mechanisms and consequences of bacterial resistance to antimicrobial peptides.
Drug Resist Updat. 2016 May;26:43-57. doi: 10.1016/j.drup.2016.04.002. Epub 2016 Apr 20.
5
Peptide Design Principles for Antimicrobial Applications.
J Mol Biol. 2019 Aug 23;431(18):3547-3567. doi: 10.1016/j.jmb.2018.12.015. Epub 2019 Jan 3.
6
Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections.
Curr Top Med Chem. 2020;20(14):1238-1263. doi: 10.2174/1568026620666200303122626.
7
Bacterial resistance to antimicrobial peptides.
J Pept Sci. 2019 Nov;25(11):e3210. doi: 10.1002/psc.3210. Epub 2019 Oct 21.
8
Combination Effects of Antimicrobial Peptides.
Antimicrob Agents Chemother. 2016 Jan 4;60(3):1717-24. doi: 10.1128/AAC.02434-15.
9
Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
Microbiol Spectr. 2022 Aug 31;10(4):e0097322. doi: 10.1128/spectrum.00973-22. Epub 2022 Jul 13.

引用本文的文献

1
Next-generation antifungal drugs: Mechanisms, efficacy, and clinical prospects.
Acta Pharm Sin B. 2025 Aug;15(8):3852-3887. doi: 10.1016/j.apsb.2025.06.013. Epub 2025 Jun 23.
6
Small-molecule strategies to combat antibiotic resistance: mechanisms, modifications, and contemporary approaches.
RSC Adv. 2025 Jul 14;15(30):24450-24474. doi: 10.1039/d5ra04047g. eCollection 2025 Jul 10.
8
Multivalent Co-assembly of LL37-CpG nanoparticles: Enhanced immune response through activating multiple cell internalization pathways.
Mater Today Bio. 2025 Jun 21;33:102011. doi: 10.1016/j.mtbio.2025.102011. eCollection 2025 Aug.

本文引用的文献

1
Dynamic Evolution of Antimicrobial Peptides Underscores Trade-Offs Between Immunity and Ecological Fitness.
Front Immunol. 2019 Nov 8;10:2620. doi: 10.3389/fimmu.2019.02620. eCollection 2019.
2
Chimeric peptidomimetic antibiotics against Gram-negative bacteria.
Nature. 2019 Dec;576(7787):452-458. doi: 10.1038/s41586-019-1665-6. Epub 2019 Oct 23.
4
Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance.
Nat Commun. 2019 Oct 4;10(1):4538. doi: 10.1038/s41467-019-12364-6.
5
Balancing Selection Drives the Maintenance of Genetic Variation in Drosophila Antimicrobial Peptides.
Genome Biol Evol. 2019 Sep 1;11(9):2691-2701. doi: 10.1093/gbe/evz191.
6
In vivo exposure of insect AMP resistant Staphylococcus aureus to an insect immune system.
Insect Biochem Mol Biol. 2019 Jul;110:60-68. doi: 10.1016/j.ibmb.2019.04.017. Epub 2019 Apr 30.
9
Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota.
Nat Microbiol. 2019 Mar;4(3):447-458. doi: 10.1038/s41564-018-0313-5. Epub 2018 Dec 17.
10
Estimating the proportion of bystander selection for antibiotic resistance among potentially pathogenic bacterial flora.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11988-E11995. doi: 10.1073/pnas.1810840115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验