Suppr超能文献

利用植物种间网络分析鉴定生长调节剂。

Identification of growth regulators using cross-species network analysis in plants.

机构信息

Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.

VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.

出版信息

Plant Physiol. 2022 Nov 28;190(4):2350-2365. doi: 10.1093/plphys/kiac374.

Abstract

With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.

摘要

随着提高植物生产力的需求,植物科学家面临的挑战之一是鉴定在有益植物性状中发挥作用的基因。此外,即使发现了这些基因,通常也不容易将有关基因功能的知识从一个物种转移到另一个物种,以鉴定功能同源物。在这里,我们专注于叶片来研究植物生长。首先,我们构建了拟南芥(Arabidopsis thaliana)、玉米(Zea mays)和白杨(Populus tremula)中的叶片生长转录网络。接下来,使用已知的生长调节剂(在这里定义为当突变或异位表达时改变植物生长的基因)以及跨物种保守网络作为指导,来预测新的拟南芥生长调节剂。通过深入的文献筛选,在 100 个预测的生长调节剂中,有 34 个在突变或过表达时被证实会影响叶片表型,因此它们代表了新的潜在生长调节剂。总体而言,这些生长调节剂参与细胞周期、植物防御反应、赤霉素、生长素和油菜素内酯信号转导。功能丧失系的表型特征分析证实了两个预测的生长调节剂参与叶片生长(NPF6.4 和 LATE MERISTEM IDENTITY2)。总之,所提出的网络方法提供了一种综合的跨物种策略,用于鉴定参与植物生长和发育的基因。

相似文献

1
Identification of growth regulators using cross-species network analysis in plants.
Plant Physiol. 2022 Nov 28;190(4):2350-2365. doi: 10.1093/plphys/kiac374.
3
Unraveling the KNOTTED1 regulatory network in maize meristems.
Genes Dev. 2012 Aug 1;26(15):1685-90. doi: 10.1101/gad.193433.112.
4
Comparative transcriptomics enables the identification of functional orthologous genes involved in early leaf growth.
Plant Biotechnol J. 2020 Feb;18(2):553-567. doi: 10.1111/pbi.13223. Epub 2019 Aug 12.
5
Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1.
Science. 1998 Nov 6;282(5391):1114-7. doi: 10.1126/science.282.5391.1114.
6
Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.
Plant Physiol. 2016 Sep;172(1):389-404. doi: 10.1104/pp.16.00285. Epub 2016 Jul 25.
7
Dysfunctional mitochondria regulate the size of root apical meristem and leaf development in Arabidopsis.
Plant Signal Behav. 2015;10(10):e1071002. doi: 10.1080/15592324.2015.1071002.
8
A Synthetic Approach Allows Rapid Characterization of the Maize Nuclear Auxin Response Circuit.
Plant Physiol. 2020 Apr;182(4):1713-1722. doi: 10.1104/pp.19.01475. Epub 2020 Mar 2.
9
Auxin Efflux Carrier ZmPGP1 Mediates Root Growth Inhibition under Aluminum Stress.
Plant Physiol. 2018 Jun;177(2):819-832. doi: 10.1104/pp.17.01379. Epub 2018 May 2.
10

引用本文的文献

本文引用的文献

2
Modulation of the DA1 pathway in maize shows that translatability of information from Arabidopsis to crops is complex.
Plant Sci. 2022 Aug;321:111295. doi: 10.1016/j.plantsci.2022.111295. Epub 2022 Apr 20.
4
Successes and insights of an industry biotech program to enhance maize agronomic traits.
Plant Sci. 2021 Jun;307:110899. doi: 10.1016/j.plantsci.2021.110899. Epub 2021 Mar 30.
5
Cotton pan-genome retrieves the lost sequences and genes during domestication and selection.
Genome Biol. 2021 Apr 23;22(1):119. doi: 10.1186/s13059-021-02351-w.
6
Drought affects the rate and duration of organ growth but not inter-organ growth coordination.
Plant Physiol. 2021 Jun 11;186(2):1336-1353. doi: 10.1093/plphys/kiab155.
7
The PEAPOD Pathway and Its Potential To Improve Crop Yield.
Trends Plant Sci. 2021 Mar;26(3):220-236. doi: 10.1016/j.tplants.2020.10.012. Epub 2020 Dec 10.
8
The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice.
Development. 2020 Oct 27;147(20):dev191734. doi: 10.1242/dev.191734.
9
SHY2 as a node in the regulation of root meristem development by auxin, brassinosteroids, and cytokinin.
J Integr Plant Biol. 2020 Oct;62(10):1500-1517. doi: 10.1111/jipb.12931. Epub 2020 Jun 8.
10
Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields?
Front Plant Sci. 2020 Feb 11;10:1783. doi: 10.3389/fpls.2019.01783. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验