Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China.
Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou 510080, China.
Metabolism. 2022 Nov;136:155294. doi: 10.1016/j.metabol.2022.155294. Epub 2022 Aug 20.
Traditional classification systems of metabolic-associated fatty liver disease (MAFLD) do not account for the high rate of extrahepatic complications. To create a new classification of MAFLD using metabolic parameters to identify risks of complications more accurately.
The retrospective study included MAFLD patients from the First Affiliated Hospital of Sun Yat-sen University for model development, and the model was validated respectively using Chinese cohort and UK Biobank database. Cluster analysis with k-means cluster was built using age, body mass index (BMI), glycosylated hemoglobin (HbA1c), total cholesterol/high density lipoprotein cholesterol (HDL-C) ratio, triglyceride, and lipoprotein(a) [Lp(a)] levels. Cox regression models were used to compare the risk of type 2 diabetes (T2DM), chronic heart disease (CHD), stroke and mortality between the clusters.
1038 MAFLD patients from cross-sectional population were recruited for the model derivation, with 10,451 cases (33.4 % of MAFLD) from Chinese cohort and 304,141 cases (34.9 % of MAFLD, 1010 cases with magnetic resonance imaging proton density fat fraction measurement [MRI-PDFF]) from the international cohort validated. Five replicable clusters of MAFLD patients were identified: Cluster 1(mild obesity and dyslipidemia-related), Cluster 2 (age related), Cluster 3 (severe insulin resistance-related), Cluster 4[high Lp(a)-related], and Cluster 5 (severe mixed hyperlipidemia-related). Patients in different clusters exhibited differences in the development of T2DM, CHD, stroke and all-causes mortality. Patients in Cluster 3 had significantly worst survival outcomes and higher risks of T2DM and CVD than those in other clusters.
The novel classification offers improved discrimination of new-onset MAFLD patients with different metabolic complications.
传统的代谢相关脂肪性肝病 (MAFLD) 分类系统并未考虑到肝外并发症的高发生率。本研究旨在利用代谢参数建立一种新的 MAFLD 分类方法,以更准确地识别并发症风险。
本回顾性研究纳入了中山大学附属第一医院的 MAFLD 患者用于模型建立,并分别使用中国队列和英国生物银行数据库对模型进行验证。采用 k-均值聚类分析构建基于年龄、体重指数 (BMI)、糖化血红蛋白 (HbA1c)、总胆固醇/高密度脂蛋白胆固醇 (HDL-C) 比值、甘油三酯和脂蛋白(a) [Lp(a)] 水平的聚类分析。使用 Cox 回归模型比较各聚类组 2 型糖尿病 (T2DM)、慢性心脏疾病 (CHD)、中风和死亡率的风险。
从横断面人群中招募了 1038 名 MAFLD 患者用于模型推导,中国队列中有 10451 例(MAFLD 的 33.4%),国际队列中有 304141 例(MAFLD 的 34.9%,1010 例接受了磁共振质子密度脂肪分数测量 [MRI-PDFF])。共识别出 5 个可重复的 MAFLD 患者聚类:聚类 1(轻度肥胖和血脂异常相关)、聚类 2(年龄相关)、聚类 3(严重胰岛素抵抗相关)、聚类 4(高 Lp(a)相关)和聚类 5(严重混合性高脂血症相关)。不同聚类的患者在 T2DM、CHD、中风和全因死亡率的发展方面存在差异。聚类 3 的患者生存结局最差,T2DM 和 CVD 的风险显著高于其他聚类。
新的分类方法可以更好地区分不同代谢并发症的新发 MAFLD 患者。