Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan; Department of Orthopaedic Surgery, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; Department of Medical Education, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan.
Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan.
Radiother Oncol. 2022 Oct;175:159-166. doi: 10.1016/j.radonc.2022.08.029. Epub 2022 Sep 5.
Well-performing survival prediction models (SPMs) help patients and healthcare professionals to choose treatment aligning with prognosis. This retrospective study aims to investigate the prognostic impacts of laboratory data and to compare the performances of Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy (METSSS) model, New England Spinal Metastasis Score (NESMS), and Skeletal Oncology Research Group machine learning algorithm (SORG-MLA) for spinal metastases (SM).
From 2010 to 2018, patients who received radiotherapy (RT) for SM at a tertiary center were enrolled and the data were retrospectively collected. Multivariate logistic and Cox-proportional-hazard regression analyses were used to assess the association between laboratory values and survival. The area under receiver-operating characteristics curve (AUROC), calibration analysis, Brier score, and decision curve analysis were used to evaluate the performance of SPMs.
A total of 2786 patients were included for analysis. The 90-day and 1-year survival rates after RT were 70.4% and 35.7%, respectively. Higher albumin, hemoglobin, or lymphocyte count were associated with better survival, while higher alkaline phosphatase, white blood cell count, neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, or international normalized ratio were associated with poor prognosis. SORG-MLA has the best discrimination (AUROC 90-day, 0.78; 1-year 0.76), best calibrations, and the lowest Brier score (90-day 0.16; 1-year 0.18). The decision curve of SORG-MLA is above the other two competing models with threshold probabilities from 0.1 to 0.8.
Laboratory data are of prognostic significance in survival prediction after RT for SM. Machine learning-based model SORG-MLA outperforms statistical regression-based model METSSS model and NESMS in survival predictions.
表现良好的生存预测模型(SPM)有助于患者和医疗保健专业人员根据预后选择治疗方案。本回顾性研究旨在探讨实验室数据的预后影响,并比较转移部位、年龄、肿瘤原发部位、性别、疾病/合并症和放疗部位(METSSS)模型、新英格兰脊柱转移评分(NESMS)和骨骼肿瘤研究组机器学习算法(SORG-MLA)在脊柱转移瘤(SM)中的性能。
2010 年至 2018 年,在一家三级中心接受放疗(RT)治疗 SM 的患者被纳入并进行回顾性数据收集。多变量逻辑和 Cox 比例风险回归分析用于评估实验室值与生存之间的关联。使用接收者操作特征曲线下面积(AUROC)、校准分析、Brier 评分和决策曲线分析来评估 SPM 的性能。
共纳入 2786 例患者进行分析。RT 后 90 天和 1 年的生存率分别为 70.4%和 35.7%。较高的白蛋白、血红蛋白或淋巴细胞计数与生存较好相关,而较高的碱性磷酸酶、白细胞计数、中性粒细胞计数、中性粒细胞与淋巴细胞比值、血小板与淋巴细胞比值或国际标准化比值与预后不良相关。SORG-MLA 具有最佳的区分度(90 天 AUROC 为 0.78,1 年 AUROC 为 0.76)、最佳的校准度和最低的 Brier 评分(90 天 0.16,1 年 0.18)。SORG-MLA 的决策曲线在阈值概率为 0.1 至 0.8 的情况下优于其他两种竞争模型。
实验室数据在 RT 治疗 SM 后生存预测中具有预后意义。基于机器学习的模型 SORG-MLA 在生存预测方面优于基于统计回归的模型 METSSS 模型和 NESMS。