Suppr超能文献

促进模式生物研究中的验证和跨系统发育整合。

Promoting validation and cross-phylogenetic integration in model organism research.

机构信息

Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA.

Institute for Computational and Data Sciences, Pennsylvania State University, Park, PA 16802, USA.

出版信息

Dis Model Mech. 2022 Sep 1;15(9). doi: 10.1242/dmm.049600. Epub 2022 Sep 20.

Abstract

Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.

摘要

模式生物(MO)研究由于生命分子和细胞语言的进化保守性,为生物学和疾病提供了基本的认识。MO 被用于鉴定和理解参与生物过程的同源基因、蛋白质、细胞和组织的功能,开发和评估技术和方法,并进行基于全器官的化学筛选,以测试药物的疗效和毒性。然而,数据集的日益丰富和计算能力的提高提出了一个重要的问题:我们如何最大限度地发挥 MO 的价值?美国国立卫生研究院组织的 50 多个虚拟演示深入讨论了提高 MO 研究的严谨性、验证性、可重复性和可翻译性的重要建议。这项工作阐明了开发和整合工具和资源的挑战和机遇。关键现有基础设施的维护和建议改进的实施将在维持生产力和促进人类生物学和疾病动物模型的验证方面发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69ab/9531892/38544e601282/dmm-15-049600-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验