Ben May Department for Cancer Research, University of Chicagogrid.170205.1, Chicago, Illinois, USA.
Department of Microbiology, University of Pennsylvaniagrid.25879.31, Philadelphia, Pennsylvania, USA.
mBio. 2022 Oct 26;13(5):e0241522. doi: 10.1128/mbio.02415-22. Epub 2022 Sep 20.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed to be essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found that human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.
严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)已导致全球超过 600 万人死亡,并且在疫苗尚未广泛普及或其公民对接种犹豫不决的国家继续传播。因此,揭示允许 SARS-CoV-2 和其他冠状病毒感染和超越人类细胞宿主机制的分子机制至关重要。冠状病毒复制会引发内质网(ER)应激和未折叠蛋白反应(UPR)的激活,这是宿主细胞途径的关键,普遍认为该途径对病毒复制至关重要。我们研究了β冠状病毒感染的人肺衍生细胞中的主要 UPR 传感器 IRE1α 激酶/核糖核酸酶及其下游转录因子效应物 XBP1s,该途径通过 IRE1α 介导的 mRNA 剪接事件进行加工。我们发现,人呼吸道冠状病毒 OC43(HCoV-OC43)、中东呼吸综合征冠状病毒(MERS-CoV)和鼠冠状病毒(MHV)均诱导 ER 应激,并强烈触发 IRE1α 的激酶和核糖核酸酶活性以及 XBP1 的剪接。相比之下,SARS-CoV-2 仅通过自身磷酸化部分激活 IRE1α,但它的核糖核酸酶活性无法剪接 XBP1。此外,尽管 IRE1α 在所有测试的冠状病毒中对于人类细胞的复制都是可有可无的,但它对于与几个关键细胞功能相关的基因的最大表达是必需的,包括 SARS-CoV-2 感染期间的干扰素信号通路。我们的数据表明,SARS-CoV-2 主动抑制自身磷酸化的 IRE1α 的核糖核酸酶,也许是作为一种逃避宿主免疫系统检测的策略。SARS-CoV-2 是本世纪继 MERS-CoV 和 SARS-CoV 之后第三种致命的呼吸道冠状病毒,导致全球数百万人死亡。其他常见的冠状病毒,如 HCoV-OC43,引起的呼吸道疾病较轻。因此,了解这些病毒在与宿主细胞相互作用方面的异同至关重要。我们在这里重点研究了肌醇需求酶 1α(IRE1α)途径,这是宿主对病毒诱导应激的未折叠蛋白反应的一部分。我们发现,MERS-CoV 和 HCoV-OC43 完全激活了 IRE1α 激酶和核糖核酸酶活性,而 SARS-CoV-2 仅部分激活 IRE1α,促进其激酶活性而不是核糖核酸酶活性。基于感染期间 IRE1α 依赖性基因表达变化,我们提出 SARS-CoV-2 阻止 IRE1α 核糖核酸酶激活是作为一种策略来限制宿主免疫系统的检测。