Suppr超能文献

构建双 Z 型 BiWO/g-CN/黑磷量子点复合材料以有效降解双酚 A。

Construction of dual Z-scheme BiWO/g-CN/black phosphorus quantum dots composites for effective bisphenol A degradation.

机构信息

College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.

College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.

出版信息

J Environ Sci (China). 2023 Feb;124:617-629. doi: 10.1016/j.jes.2021.10.027. Epub 2022 Feb 23.

Abstract

In this work, a novel dual Z-scheme BiWO/g-CN/black phosphorus quantum dots (BiWO/g-CN/BPQDs) composites were fabricated and utilized towards photocatalytic degradation of bisphenol A (BPA) under visible-light irradiation. Optimizing the content of g-CN and BPQDs in BiWO/g-CN/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes, resulting in much higher photocatalytic activity for BPA degradation (95.6%, at 20 mg/L in 120 min) than that of BiWO (63.7%), g-CN (25.0%), BPQDs (8.5%), and BiWO/g-CN (79.6%), respectively. Radical trapping experiments indicated that photogenerated holes (h) and superoxide radicals (•O) played crucial roles in photocatalytic BPA degradation. Further, the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates. This work also demonstrated that the BiWO/g-CN/BPQDs as effective photocatalysts was stable and have promising potential to remove environmental contaminants from real water samples.

摘要

在这项工作中,制备了一种新型的双 Z 型 BiWO/g-CN/黑磷量子点(BiWO/g-CN/BPQDs)复合材料,并将其用于可见光照射下的双酚 A(BPA)光催化降解。优化 BiWO/g-CN/BPQDs 复合材料中 g-CN 和 BPQDs 的含量至合适的质量比,可以增强可见光捕获能力,提高电荷分离效率和激发态电子和空穴的转移速率,从而使 BPA 降解的光催化活性(在 20 mg/L 时 120 min 内达到 95.6%)比 BiWO(63.7%)、g-CN(25.0%)、BPQDs(8.5%)和 BiWO/g-CN(79.6%)分别高得多。自由基捕获实验表明,光生空穴(h)和超氧自由基(•O)在光催化 BPA 降解中起着至关重要的作用。此外,通过分析 BPA 中间体提出了可能的降解途径和光催化机理。这项工作还证明了 BiWO/g-CN/BPQDs 作为有效光催化剂的稳定性,并具有从实际水样中去除环境污染物的广阔前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验