Suppr超能文献

细胞色素 P450 偶联效率改进的分子基础和酶工程策略。

The molecular basis and enzyme engineering strategies for improvement of coupling efficiency in cytochrome P450s.

机构信息

Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.

Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.

出版信息

Biotechnol Adv. 2022 Dec;61:108051. doi: 10.1016/j.biotechadv.2022.108051. Epub 2022 Oct 18.

Abstract

Cytochrome P450s are heme-thiolate enzymes that have been broadly applied in pharmaceutical and biosynthesis because of their efficient oxidation at inert carbons. Extensive engineering campaigns are applied to P450s to explore new non-natural substrates and reactions; however, achieving high coupling efficiency is one of the main challenges. The undesirable uncoupling reactions result in the extra consumption of expensive cofactor NAD(P)H, and lead to the accumulation of reactive oxygen species and the inactivation of enzymes and organisms. Using protein engineering methods, these limitations can be overcome by engineering and fine-tuning P450s. A systemic perspective of the enzyme structure and the catalytic mechanism is essential for P450 engineering campaigns for higher coupling efficiency. This review provide an overview on factors contributing to uncoupling and protein engineering approaches to minimize uncoupling and thereby generating efficient and robust P450s for industrials use. Contributing uncoupling factors are classified into three main groups: i) substrate binding pocket; ii) ligand access tunnel(s); and iii) electron transfer pathway(s). Finally, we draw future directions for combinations of effective state-of-the-art technologies and available software/online tools for P450s engineering campaigns.

摘要

细胞色素 P450 是一种含血红素硫醇酶,由于其在惰性碳上的高效氧化作用,已广泛应用于药物和生物合成。广泛的工程应用于 P450 以探索新的非天然底物和反应;然而,实现高偶联效率是主要挑战之一。不希望的解偶联反应导致昂贵辅因子 NAD(P)H 的额外消耗,并导致活性氧物种的积累和酶和生物体的失活。通过蛋白质工程方法,可以通过工程和微调 P450 来克服这些限制。系统的酶结构和催化机制的观点对于 P450 工程活动以实现更高的偶联效率是必不可少的。这篇综述概述了导致解偶联的因素和蛋白质工程方法,以最小化解偶联,从而为工业用途生成高效和稳健的 P450。导致解偶联的因素分为三大类:i)底物结合口袋;ii)配体进入隧道;和 iii)电子转移途径。最后,我们为 P450 工程活动的有效最先进技术和可用软件/在线工具的组合绘制了未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验