Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada.
Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA.
Molecules. 2022 Oct 18;27(20):7034. doi: 10.3390/molecules27207034.
Griseofulvin is an antifungal polyketide metabolite produced mainly by ascomycetes. Since it was commercially introduced in 1959, griseofulvin has been used in treating dermatophyte infections. This fungistatic has gained increasing interest for multifunctional applications in the last decades due to its potential to disrupt mitosis and cell division in human cancer cells and arrest hepatitis C virus replication. In addition to these inhibitory effects, we and others found griseofulvin may enhance ACE2 function, contribute to vascular vasodilation, and improve capillary blood flow. Furthermore, molecular docking analysis revealed that griseofulvin and its derivatives have good binding potential with SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), and spike protein receptor-binding domain (RBD), suggesting its inhibitory effects on SARS-CoV-2 entry and viral replication. These findings imply the repurposing potentials of the FDA-approved drug griseofulvin in designing and developing novel therapeutic interventions. In this review, we have summarized the available information from its discovery to recent progress in this growing field. Additionally, explored is the possible mechanism leading to rare hepatitis induced by griseofulvin. We found that griseofulvin and its metabolites, including 6-desmethylgriseofulvin (6-DMG) and 4- desmethylgriseofulvin (4-DMG), have favorable interactions with cytokeratin intermediate filament proteins (K8 and K18), ranging from -3.34 to -5.61 kcal mol. Therefore, they could be responsible for liver injury and Mallory body (MB) formation in hepatocytes of human, mouse, and rat treated with griseofulvin. Moreover, the stronger binding of griseofulvin to K18 in rodents than in human may explain the observed difference in the severity of hepatitis between rodents and human.
灰黄霉素是一种主要由子囊菌产生的抗真菌聚酮代谢物。自 1959 年商业引入以来,灰黄霉素一直用于治疗皮肤癣菌感染。由于其具有破坏人类癌细胞有丝分裂和细胞分裂以及阻止丙型肝炎病毒复制的潜力,因此在过去几十年中,这种抑菌剂因其多功能应用而引起了越来越多的关注。除了这些抑制作用外,我们和其他人还发现灰黄霉素可能增强 ACE2 功能,有助于血管扩张,并改善毛细血管血流。此外,分子对接分析表明,灰黄霉素及其衍生物与 SARS-CoV-2 主要蛋白酶、RNA 依赖性 RNA 聚合酶 (RdRp) 和刺突蛋白受体结合域 (RBD) 具有良好的结合潜力,表明其对 SARS-CoV-2 进入和病毒复制具有抑制作用。这些发现暗示了已获 FDA 批准的药物灰黄霉素在设计和开发新型治疗干预措施方面的再利用潜力。在这篇综述中,我们总结了从其发现到该领域最近进展的现有信息。此外,还探讨了导致灰黄霉素引起罕见肝炎的可能机制。我们发现,灰黄霉素及其代谢物,包括 6-去甲灰黄霉素 (6-DMG) 和 4-去甲灰黄霉素 (4-DMG),与细胞角蛋白中间丝蛋白 (K8 和 K18) 具有良好的相互作用,相互作用能介于-3.34 至-5.61 kcal mol 之间。因此,它们可能导致人类、小鼠和大鼠肝细胞中灰黄霉素治疗引起的肝损伤和 Mallory 体 (MB) 形成。此外,灰黄霉素与 K18 在啮齿动物中的结合强度强于人类,这可能解释了在啮齿动物和人类之间观察到的肝炎严重程度差异。