Bieniek Mateusz K, Cree Ben, Pirie Rachael, Horton Joshua T, Tatum Natalie J, Cole Daniel J
School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK.
Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK.
Commun Chem. 2022;5(1):136. doi: 10.1038/s42004-022-00754-9. Epub 2022 Oct 27.
Automated free energy calculations for the prediction of binding free energies of congeneric series of ligands to a protein target are growing in popularity, but building reliable initial binding poses for the ligands is challenging. Here, we introduce the open-source FEgrow workflow for building user-defined congeneric series of ligands in protein binding pockets for input to free energy calculations. For a given ligand core and receptor structure, FEgrow enumerates and optimises the bioactive conformations of the grown functional group(s), making use of hybrid machine learning/molecular mechanics potential energy functions where possible. Low energy structures are optionally scored using the gnina convolutional neural network scoring function, and output for more rigorous protein-ligand binding free energy predictions. We illustrate use of the workflow by building and scoring binding poses for ten congeneric series of ligands bound to targets from a standard, high quality dataset of protein-ligand complexes. Furthermore, we build a set of 13 inhibitors of the SARS-CoV-2 main protease from the literature, and use free energy calculations to retrospectively compute their relative binding free energies. FEgrow is freely available at https://github.com/cole-group/FEgrow, along with a tutorial.
用于预测同类配体与蛋白质靶点结合自由能的自动自由能计算越来越受欢迎,但为配体构建可靠的初始结合构象具有挑战性。在这里,我们介绍了开源的FEgrow工作流程,用于在蛋白质结合口袋中构建用户定义的同类配体系列,以输入自由能计算。对于给定的配体核心和受体结构,FEgrow会枚举并优化生长的官能团的生物活性构象,并尽可能利用混合机器学习/分子力学势能函数。低能量结构可选择使用gnina卷积神经网络评分函数进行评分,并输出用于更严格的蛋白质-配体结合自由能预测。我们通过为来自标准、高质量蛋白质-配体复合物数据集的与靶点结合的十个同类配体系列构建和评分结合构象来说明该工作流程的使用。此外,我们从文献中构建了一组13种SARS-CoV-2主要蛋白酶抑制剂,并使用自由能计算来回顾性计算它们的相对结合自由能。FEgrow可在https://github.com/cole-group/FEgrow上免费获取,同时还有一个教程。