Suppr超能文献

利用基于双向转录网络的计算框架鉴定决定血细胞发育的转录因子。

Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework.

机构信息

Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, 6525 GA, Nijmegen, The Netherlands.

Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.

出版信息

Sci Rep. 2022 Nov 4;12(1):18656. doi: 10.1038/s41598-022-21148-w.

Abstract

Advanced computational methods exploit gene expression and epigenetic datasets to predict gene regulatory networks controlled by transcription factors (TFs). These methods have identified cell fate determining TFs but require large amounts of reference data and experimental expertise. Here, we present an easy to use network-based computational framework that exploits enhancers defined by bidirectional transcription, using as sole input CAGE sequencing data to correctly predict TFs key to various human cell types. Next, we applied this Analysis Algorithm for Networks Specified by Enhancers based on CAGE (ANANSE-CAGE) to predict TFs driving red and white blood cell development, and THP-1 leukemia cell immortalization. Further, we predicted TFs that are differentially important to either cell line- or primary- associated MLL-AF9-driven gene programs, and in primary MLL-AF9 acute leukemia. Our approach identified experimentally validated as well as thus far unexplored TFs in these processes. ANANSE-CAGE will be useful to identify transcription factors that are key to any cell fate change using only CAGE-seq data as input.

摘要

先进的计算方法利用基因表达和表观遗传数据集来预测受转录因子 (TFs) 控制的基因调控网络。这些方法已经确定了决定细胞命运的 TF,但需要大量的参考数据和实验专业知识。在这里,我们提出了一个易于使用的基于网络的计算框架,该框架利用双向转录定义的增强子,仅将 CAGE 测序数据作为输入,即可正确预测对各种人类细胞类型至关重要的 TF。接下来,我们将基于 CAGE 的增强子指定的网络分析算法 (ANANSE-CAGE) 应用于预测驱动红细胞和白细胞发育以及 THP-1 白血病细胞永生化的 TF。此外,我们预测了对细胞系或与初级相关的 MLL-AF9 驱动的基因程序以及原发性 MLL-AF9 急性白血病具有差异重要性的 TF。我们的方法在这些过程中鉴定了实验验证的以及迄今为止尚未探索的 TF。ANANSE-CAGE 将有助于仅使用 CAGE-seq 数据作为输入来识别对任何细胞命运变化都很关键的转录因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0efe/9636203/4dca0beca23b/41598_2022_21148_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验