Suppr超能文献

全球流动性的变化决定了 SARS-CoV-2 疫情波的同步性。

Shifts in global mobility dictate the synchrony of SARS-CoV-2 epidemic waves.

机构信息

KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.

Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.

出版信息

J Travel Med. 2022 Dec 27;29(8). doi: 10.1093/jtm/taac134.

Abstract

BACKGROUND

Human mobility changed in unprecedented ways during the SARS-CoV-2 pandemic. In March and April 2020, when lockdowns and large travel restrictions began in most countries, global air-travel almost entirely halted (92% decrease in commercial global air travel in the months between February and April 2020). Initial recovery in global air travel started around July 2020 and subsequently nearly tripled between May and July 2021. Here, we aim to establish a preliminary link between global mobility patterns and the synchrony of SARS-CoV-2 epidemic waves across the world.

METHODS

We compare epidemic peaks and human global mobility in two time periods: November 2020 to February 2021 (when just over 70 million passengers travelled) and November 2021 to February 2022 (when more than 200 million passengers travelled). We calculate the time interval during which continental epidemic peaks occurred for both of these time periods, and we calculate the pairwise correlations of epidemic waves between all pairs of countries for the same time periods.

RESULTS

We find that as air travel increases at the end of 2021, epidemic peaks around the world are more synchronous with one another, both globally and regionally. Continental epidemic peaks occur globally within a 20 day interval at the end of 2021 compared with 73 days at the end of 2020, and epidemic waves globally are more correlated with one another at the end of 2021.

CONCLUSIONS

This suggests that the rebound in human mobility dictates the synchrony of global and regional epidemic waves. In line with theoretical work, we show that in a more connected world, epidemic dynamics are more synchronized.

摘要

背景

在 SARS-CoV-2 大流行期间,人类的流动性以前所未有的方式发生了变化。2020 年 3 月和 4 月,当大多数国家开始实施封锁和大规模旅行限制时,全球航空旅行几乎完全停止(2020 年 2 月至 4 月间,商业全球航空旅行减少了 92%)。全球航空旅行的初步复苏始于 2020 年 7 月左右,随后在 2021 年 5 月至 7 月期间几乎翻了三倍。在这里,我们旨在建立全球流动模式与全球 SARS-CoV-2 疫情波之间的初步联系。

方法

我们将 2020 年 11 月至 2021 年 2 月(当时只有超过 7000 万名乘客出行)和 2021 年 11 月至 2022 年 2 月(当时有超过 2 亿名乘客出行)这两个时间段的疫情高峰期和全球人类流动进行比较。我们计算了这两个时间段内大陆疫情高峰期发生的时间间隔,并且计算了同一时间段内所有国家之间疫情波的两两相关性。

结果

我们发现,随着 2021 年底航空旅行的增加,世界各地的疫情高峰期更加同步,无论是在全球范围内还是在区域范围内。与 2020 年底的 73 天相比,2021 年底全球范围内的大陆疫情高峰期在 20 天的时间间隔内发生,并且全球范围内的疫情波更加相关。

结论

这表明人类流动性的反弹决定了全球和区域疫情波的同步性。与理论工作一致,我们表明在一个联系更加紧密的世界中,疫情动态更加同步。

相似文献

1
Shifts in global mobility dictate the synchrony of SARS-CoV-2 epidemic waves.
J Travel Med. 2022 Dec 27;29(8). doi: 10.1093/jtm/taac134.
2
Global Mpox spread due to increased air travel.
Geospat Health. 2024 Jun 11;19(1). doi: 10.4081/gh.2024.1261.
4
Uncovering two phases of early intercontinental COVID-19 transmission dynamics.
J Travel Med. 2020 Dec 23;27(8). doi: 10.1093/jtm/taaa200.
5
How to avoid a local epidemic becoming a global pandemic.
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2220080120. doi: 10.1073/pnas.2220080120. Epub 2023 Feb 27.
6
Dispersal patterns and influence of air travel during the global expansion of SARS-CoV-2 variants of concern.
Cell. 2023 Jul 20;186(15):3277-3290.e16. doi: 10.1016/j.cell.2023.06.001. Epub 2023 Jun 7.
7
The fading impact of lockdowns: A data analysis of the effectiveness of Covid-19 travel restrictions during different pandemic phases.
PLoS One. 2022 Jun 17;17(6):e0269774. doi: 10.1371/journal.pone.0269774. eCollection 2022.

引用本文的文献

1
Routes of importation and spatial dynamics of SARS-CoV-2 variants during localized interventions in Chile.
PNAS Nexus. 2024 Oct 28;3(11):pgae483. doi: 10.1093/pnasnexus/pgae483. eCollection 2024 Nov.
3
Genomic surveillance reveals dynamic shifts in the connectivity of COVID-19 epidemics.
Cell. 2023 Dec 21;186(26):5690-5704.e20. doi: 10.1016/j.cell.2023.11.024. Epub 2023 Dec 14.
4
Dispersal patterns and influence of air travel during the global expansion of SARS-CoV-2 variants of concern.
Cell. 2023 Jul 20;186(15):3277-3290.e16. doi: 10.1016/j.cell.2023.06.001. Epub 2023 Jun 7.
5
Global Expansion of SARS-CoV-2 Variants of Concern: Dispersal Patterns and Influence of Air Travel.
medRxiv. 2022 Nov 27:2022.11.22.22282629. doi: 10.1101/2022.11.22.22282629.

本文引用的文献

1
Context-specific emergence and growth of the SARS-CoV-2 Delta variant.
Nature. 2022 Oct;610(7930):154-160. doi: 10.1038/s41586-022-05200-3. Epub 2022 Aug 11.
3
Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa.
Nat Med. 2022 Sep;28(9):1785-1790. doi: 10.1038/s41591-022-01911-2. Epub 2022 Jun 27.
5
Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa.
Nature. 2022 Mar;603(7902):679-686. doi: 10.1038/s41586-022-04411-y. Epub 2022 Jan 7.
6
The political theatre of the UK's travel ban on South Africa.
Lancet. 2021 Dec 18;398(10318):2211-2213. doi: 10.1016/S0140-6736(21)02752-5. Epub 2021 Dec 3.
8
Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence.
Science. 2021 Aug 20;373(6557):889-895. doi: 10.1126/science.abj0113. Epub 2021 Jul 22.
9
Untangling introductions and persistence in COVID-19 resurgence in Europe.
Nature. 2021 Jul;595(7869):713-717. doi: 10.1038/s41586-021-03754-2. Epub 2021 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验