Suppr超能文献

细菌对抗菌药物的耐药性:机制、控制策略及其对全球健康的影响。

Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health.

机构信息

Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China.

Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.

出版信息

Sci Total Environ. 2023 Feb 20;860:160461. doi: 10.1016/j.scitotenv.2022.160461. Epub 2022 Nov 23.

Abstract

The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).

摘要

细菌耐药性的传播对全球公共健康构成了严重威胁。在这里,我们将介绍当前对抗菌药物具有耐药性的细菌,包括传统草药、常规抗生素和抗菌肽。我们总结了细菌耐药性对全球健康的影响及其经济负担,同时强调了细菌产生耐药性的机制。基于“同一健康”理念,我们提出了 4A 策略来对抗细菌耐药性,包括谨慎使用抗菌药物、管理、检测和抗生素替代品。最后,我们确定了一些对抗细菌耐药性的机会和未解决的问题,值得未来探索,例如通过使用更有效的技术来预测细菌的遗传耐药性,调查细菌耐药性的遗传决定因素和抗生素耐药基因 (ARGs) 的传播动态。

相似文献

1
Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health.
Sci Total Environ. 2023 Feb 20;860:160461. doi: 10.1016/j.scitotenv.2022.160461. Epub 2022 Nov 23.
2
Antimicrobial peptides: Opportunities and challenges in overcoming resistance.
Microbiol Res. 2024 Sep;286:127822. doi: 10.1016/j.micres.2024.127822. Epub 2024 Jun 26.
3
Mechanism-guided strategies for combating antibiotic resistance.
World J Microbiol Biotechnol. 2024 Aug 10;40(10):295. doi: 10.1007/s11274-024-04106-8.
5
Bacterial genome engineering and synthetic biology: combating pathogens.
BMC Microbiol. 2016 Nov 4;16(1):258. doi: 10.1186/s12866-016-0876-3.
6
Antimicrobial peptide-based strategies to overcome antimicrobial resistance.
Arch Microbiol. 2024 Sep 23;206(10):411. doi: 10.1007/s00203-024-04133-x.
7
Antibiotic resistance genes in bacteria: Occurrence, spread, and control.
J Basic Microbiol. 2021 Dec;61(12):1049-1070. doi: 10.1002/jobm.202100201. Epub 2021 Oct 14.
9
Thymol-Decorated Gold Nanoparticles for Curing Clinical Infections Caused by Bacteria Resistant to Last-Resort Antibiotics.
mSphere. 2023 Jun 22;8(3):e0054922. doi: 10.1128/msphere.00549-22. Epub 2023 Apr 5.

引用本文的文献

1
Isolation, identification, and characterization of a marine strain with antimicrobial activity against .
Front Microbiol. 2025 Jul 22;16:1636121. doi: 10.3389/fmicb.2025.1636121. eCollection 2025.
2
Novel p-Hydroxybenzoic Acid Derivative Isolated from and Its Antibacterial Activity.
Antibiotics (Basel). 2025 Jun 7;14(6):591. doi: 10.3390/antibiotics14060591.
3
Antibacterial Activity of Ciprofloxacin-Based Carbon Dot@Silver Nanoparticle Composites.
ACS Omega. 2025 Mar 14;10(11):11505-11515. doi: 10.1021/acsomega.5c00142. eCollection 2025 Mar 25.
5
An Overview of the Genetic Mechanisms of Colistin-Resistance in Bacterial Pathogens: An Indian Perspective.
Cureus. 2025 Feb 9;17(2):e78800. doi: 10.7759/cureus.78800. eCollection 2025 Feb.
8
Current Progress in the Development of mRNA Vaccines Against Bacterial Infections.
Int J Mol Sci. 2024 Dec 6;25(23):13139. doi: 10.3390/ijms252313139.
9
Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections.
Mater Today Bio. 2024 Sep 16;29:101255. doi: 10.1016/j.mtbio.2024.101255. eCollection 2024 Dec.

本文引用的文献

2
Biofilms: Formation, drug resistance and alternatives to conventional approaches.
AIMS Microbiol. 2022 Jul 4;8(3):239-277. doi: 10.3934/microbiol.2022019. eCollection 2022.
4
Deep generative models for peptide design.
Digit Discov. 2022 Mar 31;1(3):195-208. doi: 10.1039/d1dd00024a. eCollection 2022 Jun 13.
6
Defensins as a promising class of tick antimicrobial peptides: a scoping review.
Infect Dis Poverty. 2022 Jun 20;11(1):71. doi: 10.1186/s40249-022-00996-8.
7
High prevalence of MRSA and VRSA among inpatients of Mettu Karl Referral Hospital, Southwest Ethiopia.
Trop Med Int Health. 2022 Aug;27(8):735-741. doi: 10.1111/tmi.13789. Epub 2022 Jul 25.
8
Autonomous Treatment of Bacterial Infections Using Antimicrobial Micro- and Nanomotors.
ACS Nano. 2022 May 24;16(5):7547-7558. doi: 10.1021/acsnano.1c11013. Epub 2022 Apr 29.
9
A Systematic Review of Medicinal Plants of Kenya used in the Management of Bacterial Infections.
Evid Based Complement Alternat Med. 2022 Mar 24;2022:9089360. doi: 10.1155/2022/9089360. eCollection 2022.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验