Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Information Management and Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Cancer Res. 2023 Feb 15;83(4):568-581. doi: 10.1158/0008-5472.CAN-22-1740.
Contradictory characteristics of elevated mutational burden and a "cold" tumor microenvironment (TME) coexist in liver kinase B1 (LKB1)-mutant non-small cell lung cancers (NSCLC). The molecular basis underlying this paradox and strategies tailored to these historically difficult to treat cancers are lacking. Here, by mapping the single-cell transcriptomic landscape of genetically engineered mouse models with Kras versus Kras/Lkb1-driven lung tumors, we detected impaired tumor-intrinsic IFNγ signaling in Kras/Lkb1-driven tumors that explains the inert immune context. Mechanistic analysis showed that mutant LKB1 led to deficiency in the DNA damage repair process and abnormally activated PARP1. Hyperactivated PARP1 attenuated the IFNγ pathway by physically interacting with and enhancing the poly(ADP-ribosyl)ation of STAT1, compromising its phosphorylation and activation. Abrogation of the PARP1-driven program triggered synthetic lethality in NSCLC on the basis of the LKB1 mutation-mediated DNA repair defect, while also restoring phosphorylated STAT1 to favor an immunologically "hot" TME. Accordingly, PARP1 inhibition restored the disrupted IFNγ signaling and thus mounted an adaptive immune response to synergize with PD-1 blockade in multiple LKB1-deficient murine tumor models. Overall, this study reveals an unexplored interplay between the DNA repair process and adaptive immune response, providing a molecular basis for dual PARP1 and PD-1 inhibition in treating LKB1-mutant NSCLC.
Targeting PARP exerts dual effects to overcome LKB1 loss-driven immunotherapy resistance through triggering DNA damage and adaptive immunity, providing a rationale for dual PARP and PD-1 inhibition in treating LKB1-mutant lung cancers.
在肝激酶 B1(LKB1)突变的非小细胞肺癌(NSCLC)中,高突变负担和“冷”肿瘤微环境(TME)的矛盾特征并存。这种悖论的分子基础以及针对这些历史上难以治疗的癌症的策略尚不清楚。在这里,通过对具有 Kras 与 Kras/Lkb1 驱动的肺肿瘤的基因工程小鼠模型进行单细胞转录组图谱绘制,我们在 Kras/Lkb1 驱动的肿瘤中检测到肿瘤内在 IFNγ信号受损,这解释了惰性免疫背景。机制分析表明,突变 LKB1 导致 DNA 损伤修复过程缺陷和异常激活 PARP1。过度激活的 PARP1 通过与 STAT1 物理相互作用并增强其聚(ADP-核糖)化,削弱 IFNγ 通路,从而损害其磷酸化和激活。PARP1 驱动程序的中断会导致 NSCLC 的合成致死性,这是基于 LKB1 突变介导的 DNA 修复缺陷,同时还恢复磷酸化 STAT1 以有利于免疫“热”TME。因此,PARP1 抑制恢复了中断的 IFNγ 信号,从而引发适应性免疫反应,与 PD-1 阻断在多个 LKB1 缺陷的小鼠肿瘤模型中协同作用。总的来说,这项研究揭示了 DNA 修复过程与适应性免疫反应之间尚未被探索的相互作用,为 LKB1 突变 NSCLC 的双重 PARP1 和 PD-1 抑制治疗提供了分子基础。
通过触发 DNA 损伤和适应性免疫,靶向 PARP 产生双重效果,克服 LKB1 缺失驱动的免疫治疗抵抗,为 LKB1 突变肺肿瘤的双重 PARP 和 PD-1 抑制治疗提供了依据。