Suppr超能文献

模拟生活模式:更具代表性的考虑到上下文的时间活动模式。

Simulating patterns of life: More representative time-activity patterns that account for context.

机构信息

RENCI, Chapel Hill, NC, United States.

U.S. EPA, Research Triangle Park, NC, United States.

出版信息

Environ Int. 2023 Feb;172:107753. doi: 10.1016/j.envint.2023.107753. Epub 2023 Jan 16.

Abstract

BACKGROUND

Complex contributions of environment to health are intimately connected to human behavior. Modeling of human behaviors and their influences helps inform important policy decisions related to critical environmental and public health challenges. A typical approach to human behavior modeling involves generating daily schedules based on time-activity patterns of individual humans, simulating 'agents' with these schedules, and interpreting patterns of life that emerge from the simulation to inform a research question. Current behavior modeling, however, rarely incorporates the context that surrounds individuals' truly broad scope of activities and influences on those activities.

OBJECTIVES

We describe in detail a range of elements involved in generating time-activity patterns and connect work in the social science field of behavior modeling with applications in exposure science and environmental health. We propose a framework for behavior modeling that takes a systems approach and considers the broad scope of activities and influences required to simulate more representative patterns of life and thus improve modeling that underlies understanding of environmental contributions to health and associated decisions to promote and protect public health.

METHODS

We describe an agent-based modeling approach reliant on generating a population's schedules, filtering the schedules, simulating behavior using the schedules, analyzing the emergent patterns, and interrogating results that leverages general empirical information in a systems context to inform fit-for-purpose action.

DISCUSSION

We propose a centralized and standardized program to codify behavior information and generate population schedules that researchers can select from to simulate human behavior and holistically characterize human-environment interactions for a variety of public health applications.

摘要

背景

环境对健康的复杂影响与人类行为密切相关。人类行为建模及其影响的模拟有助于为与关键环境和公共卫生挑战相关的重要政策决策提供信息。人类行为建模的一种典型方法涉及根据个体人类的时间-活动模式生成日常时间表,用这些时间表模拟“代理”,并从模拟中解释出现的生活模式,以回答研究问题。然而,目前的行为建模很少将个人真正广泛的活动范围及其对这些活动的影响纳入其中。

目的

我们详细描述了生成时间-活动模式所涉及的一系列要素,并将行为建模领域的社会科学工作与暴露科学和环境健康应用联系起来。我们提出了一种行为建模框架,该框架采用系统方法,考虑到模拟更具代表性的生活模式所需的广泛活动和影响范围,从而改进了对健康的环境贡献以及促进和保护公共健康的相关决策的理解的基础建模。

方法

我们描述了一种基于代理的建模方法,该方法依赖于生成人群的时间表,对时间表进行过滤,使用时间表模拟行为,分析出现的模式,并询问利用系统背景中的一般经验信息来提供合适的行动的结果。

讨论

我们提出了一个集中式和标准化的计划,对行为信息进行编码,并生成人群时间表,研究人员可以从中选择来模拟人类行为,并全面描述各种公共卫生应用中的人类-环境相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb2/11057331/8c548bf70633/nihms-1985352-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验