Suppr超能文献

Amber和CHARMM中连续恒定pH分子动力学方法指南[文章v1.0]

A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0].

作者信息

Henderson Jack A, Liu Ruibin, Harris Julie A, Huang Yandong, de Oliveira Vinicius Martins, Shen Jana

机构信息

University of Maryland School of Pharmacy, Baltimore, MD.

出版信息

Living J Comput Mol Sci. 2022;4(1). doi: 10.33011/livecoms.4.1.1563. Epub 2022 Aug 22.

Abstract

Like temperature and pressure, solution pH is an important environmental variable in biomolecular simulations. Virtually all proteins depend on pH to maintain their structure and function. In conventional molecular dynamics (MD) simulations of proteins, pH is implicitly accounted for by assigning and fixing protonation states of titratable sidechains. This is a significant limitation, as the assigned protonation states may be wrong and they may change during dynamics. In this tutorial, we guide the reader in learning and using the various continuous constant pH MD methods in Amber and CHARMM packages, which have been applied to predict p values and elucidate proton-coupled conformational dynamics of a variety of proteins including enzymes and membrane transporters.

摘要

与温度和压力一样,溶液pH值是生物分子模拟中一个重要的环境变量。几乎所有蛋白质都依赖pH值来维持其结构和功能。在蛋白质的传统分子动力学(MD)模拟中,通过指定和固定可滴定侧链的质子化状态来隐式考虑pH值。这是一个重大限制,因为指定的质子化状态可能是错误的,并且它们可能在动力学过程中发生变化。在本教程中,我们指导读者学习和使用Amber和CHARMM软件包中的各种连续恒定pH值MD方法,这些方法已被用于预测p值并阐明包括酶和膜转运蛋白在内的多种蛋白质的质子耦合构象动力学。

相似文献

1
A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0].
Living J Comput Mol Sci. 2022;4(1). doi: 10.33011/livecoms.4.1.1563. Epub 2022 Aug 22.
2
Generalized Born Based Continuous Constant pH Molecular Dynamics in Amber: Implementation, Benchmarking and Analysis.
J Chem Inf Model. 2018 Jul 23;58(7):1372-1383. doi: 10.1021/acs.jcim.8b00227. Epub 2018 Jul 11.
3
Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics.
bioRxiv. 2024 Oct 26:2024.09.03.611076. doi: 10.1101/2024.09.03.611076.
4
GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.
J Chem Theory Comput. 2022 Dec 13;18(12):7510-7527. doi: 10.1021/acs.jctc.2c00586. Epub 2022 Nov 15.
5
GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p Predictions with Single-pH Simulations.
J Chem Inf Model. 2019 Nov 25;59(11):4821-4832. doi: 10.1021/acs.jcim.9b00754. Epub 2019 Nov 14.
6
Continuous Constant pH Molecular Dynamics Simulations of Transmembrane Proteins.
Methods Mol Biol. 2021;2302:275-287. doi: 10.1007/978-1-0716-1394-8_15.
9
Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics.
J Chem Theory Comput. 2011 Jun 14;7(6):1962-1978. doi: 10.1021/ct200061r. Epub 2011 Apr 25.
10
Exploring the early stages of the pH-induced conformational change of influenza hemagglutinin.
Proteins. 2014 Oct;82(10):2412-28. doi: 10.1002/prot.24606. Epub 2014 Jun 9.

引用本文的文献

1
Structure-based rational design of covalent probes.
Commun Chem. 2025 Aug 12;8(1):242. doi: 10.1038/s42004-025-01606-y.
2
The Plasma Membrane may Serve as a Drug Depot to Drive the Extreme Potency of Fentanyl.
bioRxiv. 2025 Jul 26:2025.07.22.666146. doi: 10.1101/2025.07.22.666146.
3
Robustness in biomolecular simulations: Addressing challenges in data generation, analysis, and curation.
Cell Rep Phys Sci. 2025 May 21;6(5). doi: 10.1016/j.xcrp.2025.102566. Epub 2025 Apr 30.
4
Mechanism of dimer selectivity and binding cooperativity of BRAF inhibitors.
Elife. 2025 Feb 13;13:RP95334. doi: 10.7554/eLife.95334.
5
Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics.
J Phys Chem B. 2024 Nov 28;128(47):11616-11624. doi: 10.1021/acs.jpcb.4c05971. Epub 2024 Nov 12.
7
Ionizable networks mediate pH-dependent allostery in SH2 signaling proteins.
bioRxiv. 2024 Aug 21:2024.08.21.608875. doi: 10.1101/2024.08.21.608875.
9
Assembly of short amphiphilic peptoids into nanohelices with controllable supramolecular chirality.
Nat Commun. 2024 Apr 16;15(1):3264. doi: 10.1038/s41467-024-46839-y.
10
Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures.
J Phys Chem B. 2024 Mar 14;128(10):2304-2316. doi: 10.1021/acs.jpcb.3c07421. Epub 2024 Mar 2.

本文引用的文献

1
GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.
J Chem Theory Comput. 2022 Dec 13;18(12):7510-7527. doi: 10.1021/acs.jctc.2c00586. Epub 2022 Nov 15.
2
Profiling MAP kinase cysteines for targeted covalent inhibitor design.
RSC Med Chem. 2021 Nov 3;13(1):54-63. doi: 10.1039/d1md00277e. eCollection 2022 Jan 27.
3
Kinetics and Mechanism of Fentanyl Dissociation from the μ-Opioid Receptor.
JACS Au. 2021 Nov 5;1(12):2208-2215. doi: 10.1021/jacsau.1c00341. eCollection 2021 Dec 27.
4
Exploring the pH- and Ligand-Dependent Flap Dynamics of Malarial Plasmepsin II.
J Chem Inf Model. 2022 Jan 10;62(1):150-158. doi: 10.1021/acs.jcim.1c01180. Epub 2021 Dec 29.
5
BLaDE: A Basic Lambda Dynamics Engine for GPU-Accelerated Molecular Dynamics Free Energy Calculations.
J Chem Theory Comput. 2021 Nov 9;17(11):6799-6807. doi: 10.1021/acs.jctc.1c00833. Epub 2021 Oct 28.
6
Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases.
J Med Chem. 2022 Jan 27;65(2):1525-1535. doi: 10.1021/acs.jmedchem.1c01186. Epub 2021 Oct 14.
7
Continuous Constant pH Molecular Dynamics Simulations of Transmembrane Proteins.
Methods Mol Biol. 2021;2302:275-287. doi: 10.1007/978-1-0716-1394-8_15.
8
How μ-opioid receptor recognizes fentanyl.
Nat Commun. 2021 Feb 12;12(1):984. doi: 10.1038/s41467-021-21262-9.
9
Exploring the pH-Dependent Structure-Dynamics-Function Relationship of Human Renin.
J Chem Inf Model. 2021 Jan 25;61(1):400-407. doi: 10.1021/acs.jcim.0c01201. Epub 2020 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验