Suppr超能文献

基于蛋白质折叠稳定性的分析方法比较用于生物表型特征分析。

Comparative Analysis of Protein Folding Stability-Based Profiling Methods for Characterization of Biological Phenotypes.

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.

出版信息

J Am Soc Mass Spectrom. 2023 Mar 1;34(3):383-393. doi: 10.1021/jasms.2c00248. Epub 2023 Feb 20.

Abstract

Recently, a new suite of mass spectrometry-based proteomic methods has been developed that enables evaluation of protein folding stability on the proteomic scale. These methods utilize chemical and thermal denaturation approaches (SPROX and TPP, respectively) as well as proteolysis strategies (DARTS, LiP, and PP) to assess protein folding stability. The analytical capabilities of these technique have been well-established for protein target discovery applications. However, less is known about the relative advantages and disadvantages of using these different strategies to characterize biological phenotypes. Reported here is a comparative study of SPROX, TPP, LiP, and conventional protein expression level measurements using both a mouse model of aging and a mammalian cell culture model of breast cancer. Analyses on proteins in brain tissue cell lysates derived from 1- and 18-month-old mice ( = 4-5 at each time point) and on proteins in cell lysates derived from the MCF-7 and MCF-10A cell lines revealed a majority of the differentially stabilized protein hits in each phenotype analysis had unchanged expression levels. In both phenotype analyses, TPP generated the largest number and fraction of differentially stabilized protein hits. Only a quarter of all the protein hits identified in each phenotype analysis had a differential stability that was detected using multiple techniques. This work also reports the first peptide-level analysis of TPP data, which was required for the correct interpretation of the phenotype analyses performed here. Studies on selected protein stability hits also uncovered phenotype-related functional changes.

摘要

最近,开发了一套新的基于质谱的蛋白质组学方法,能够在蛋白质组学水平上评估蛋白质折叠稳定性。这些方法利用化学和热变性方法(分别为 SPROX 和 TPP)以及蛋白水解策略(DARTS、LiP 和 PP)来评估蛋白质折叠稳定性。这些技术的分析能力已在蛋白质靶标发现应用中得到很好的建立。然而,对于使用这些不同策略来表征生物学表型的相对优缺点知之甚少。本研究报告了使用衰老小鼠模型和乳腺癌哺乳动物细胞培养模型对 SPROX、TPP、LiP 和常规蛋白质表达水平测量进行的比较研究。对来自 1 个月和 18 个月大的小鼠脑组织细胞裂解物(每个时间点有 4-5 只)中的蛋白质以及来自 MCF-7 和 MCF-10A 细胞系的细胞裂解物中的蛋白质进行分析,结果表明在每个表型分析中,大多数差异稳定的蛋白质靶标具有不变的表达水平。在两种表型分析中,TPP 产生的差异稳定蛋白质靶标数量最多,分数最高。在每个表型分析中确定的所有蛋白质靶标中,只有四分之一的蛋白质靶标具有使用多种技术检测到的差异稳定性。本研究还报告了 TPP 数据的首次肽水平分析,这是正确解释这里进行的表型分析所必需的。对选定的蛋白质稳定性靶标的研究还揭示了与表型相关的功能变化。

相似文献

1
Comparative Analysis of Protein Folding Stability-Based Profiling Methods for Characterization of Biological Phenotypes.
J Am Soc Mass Spectrom. 2023 Mar 1;34(3):383-393. doi: 10.1021/jasms.2c00248. Epub 2023 Feb 20.
2
Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale.
J Proteome Res. 2018 Nov 2;17(11):3614-3627. doi: 10.1021/acs.jproteome.8b00341. Epub 2018 Oct 8.
3
Proteome-Wide Characterization of Phosphorylation-Induced Conformational Changes in Breast Cancer.
J Proteome Res. 2018 Mar 2;17(3):1129-1137. doi: 10.1021/acs.jproteome.7b00795. Epub 2018 Jan 30.
4
Analysis of Brain Protein Stability Changes in a Mouse Model of Alzheimer's Disease.
J Proteome Res. 2024 Oct 4;23(10):4443-4456. doi: 10.1021/acs.jproteome.4c00406. Epub 2024 Sep 18.
5
Discovery of Tamoxifen and N-Desmethyl Tamoxifen Protein Targets in MCF-7 Cells Using Large-Scale Protein Folding and Stability Measurements.
J Proteome Res. 2017 Nov 3;16(11):4073-4085. doi: 10.1021/acs.jproteome.7b00442. Epub 2017 Oct 11.
6
A Comparison of Two Stability Proteomics Methods for Drug Target Identification in OnePot 2D Format.
ACS Chem Biol. 2021 Aug 20;16(8):1445-1455. doi: 10.1021/acschembio.1c00317. Epub 2021 Aug 10.
7
Discovery of Age-Related Protein Folding Stability Differences in the Mouse Brain Proteome.
J Proteome Res. 2016 Dec 2;15(12):4731-4741. doi: 10.1021/acs.jproteome.6b00927. Epub 2016 Nov 17.
8
Comparative Analysis of Mass-Spectrometry-Based Proteomic Methods for Protein Target Discovery Using a One-Pot Approach.
J Am Soc Mass Spectrom. 2020 Feb 5;31(2):217-226. doi: 10.1021/jasms.9b00041. Epub 2019 Nov 22.
9
Global analysis of protein folding thermodynamics for disease state characterization.
J Proteome Res. 2015 May 1;14(5):2287-97. doi: 10.1021/acs.jproteome.5b00057. Epub 2015 Apr 9.
10
Large-Scale Analysis of Breast Cancer-Related Conformational Changes in Proteins Using SILAC-SPROX.
J Proteome Res. 2017 Sep 1;16(9):3277-3286. doi: 10.1021/acs.jproteome.7b00283. Epub 2017 Jul 27.

引用本文的文献

1
Top-Down Stability of Proteins from Rates of Oxidation (TD-SPROX) Approach for Measuring Proteoform-Specific Folding Stability.
Anal Chem. 2024 Dec 10;96(49):19597-19604. doi: 10.1021/acs.analchem.4c04469. Epub 2024 Nov 27.
2
Analysis of Brain Protein Stability Changes in a Mouse Model of Alzheimer's Disease.
J Proteome Res. 2024 Oct 4;23(10):4443-4456. doi: 10.1021/acs.jproteome.4c00406. Epub 2024 Sep 18.
3
Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics.
Front Anal Sci. 2023;3. doi: 10.3389/frans.2023.1186623. Epub 2023 Jun 21.
4
The Effects and Mechanism of ATM Kinase Inhibitors in .
Int J Mol Sci. 2024 Jun 25;25(13):6947. doi: 10.3390/ijms25136947.
5
Systematic Investigation of Dose-Dependent Protein Thermal Stability Changes to Uncover the Mechanisms of the Pleiotropic Effects of Metformin.
ACS Pharmacol Transl Sci. 2024 Jan 9;7(2):467-477. doi: 10.1021/acsptsci.3c00298. eCollection 2024 Feb 9.
6
Stability-Based Proteomics for Investigation of Structured RNA-Protein Interactions.
Anal Chem. 2024 Feb 11. doi: 10.1021/acs.analchem.3c04978.
7
Protein Folding Stability Profiling of Colorectal Cancer Chemoresistance Identifies Functionally Relevant Biomarkers.
J Proteome Res. 2023 Jun 2;22(6):1923-1935. doi: 10.1021/acs.jproteome.3c00045. Epub 2023 May 1.

本文引用的文献

1
Integrated changes in thermal stability and proteome abundance during altered nutrient states in Escherichia coli and human cells.
Proteomics. 2022 Oct;22(19-20):e2100254. doi: 10.1002/pmic.202100254. Epub 2022 Sep 16.
3
Analysis of Brain Protein Stability Changes in Mouse Models of Normal Aging and α-Synucleinopathy Reveals Age- and Disease-Related Differences.
J Proteome Res. 2021 Nov 5;20(11):5156-5168. doi: 10.1021/acs.jproteome.1c00653. Epub 2021 Oct 4.
4
A Comparison of Two Stability Proteomics Methods for Drug Target Identification in OnePot 2D Format.
ACS Chem Biol. 2021 Aug 20;16(8):1445-1455. doi: 10.1021/acschembio.1c00317. Epub 2021 Aug 10.
5
Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin.
Cell Chem Biol. 2021 Dec 16;28(12):1750-1757.e5. doi: 10.1016/j.chembiol.2021.02.017. Epub 2021 Mar 15.
6
Discovery of a σ receptor antagonist by combination of unbiased cell painting and thermal proteome profiling.
Cell Chem Biol. 2021 Jun 17;28(6):848-854.e5. doi: 10.1016/j.chembiol.2021.01.009. Epub 2021 Feb 9.
7
Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane.
Nat Methods. 2021 Jan;18(1):84-91. doi: 10.1038/s41592-020-01022-1. Epub 2021 Jan 4.
8
NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications.
Signal Transduct Target Ther. 2020 Oct 7;5(1):231. doi: 10.1038/s41392-020-00326-0.
9
Identifying the Target of an Antiparasitic Compound in Using Thermal Proteome Profiling.
ACS Chem Biol. 2020 Jul 17;15(7):1801-1807. doi: 10.1021/acschembio.0c00369. Epub 2020 Jul 6.
10
Thermal proteome profiling for interrogating protein interactions.
Mol Syst Biol. 2020 Mar;16(3):e9232. doi: 10.15252/msb.20199232.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验