Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
Department of Dermatology, People's Hospital of Peking University, Beijing, People's Republic of China.
Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231165131. doi: 10.1177/15330338231165131.
This study aimed to develop and validate predictive models based on machine learning (ML) algorithms for patients with bone metastases (BM) from clear cell renal cell carcinoma (ccRCC) and to identify appropriate models for clinical decision-making.
In this retrospective study, we obtained information on ccRCC patients diagnosed with bone metastasis (ccRCC-BM), from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015 ( = 1490), and collected clinicopathological information on ccRCC-BM patients at our hospital ( = 42). We then applied four ML algorithms: extreme gradient boosting (XGB), logistic regression (LR), random forest (RF), and Naive Bayes model (NB), to develop models for predicting the overall survival (OS) of patients with bone metastasis from ccRCC. In the SEER dataset, 70% of the patients were randomly divided into training cohorts and the remaining 30% were used as validation cohorts. Data from our center were used as an external validation cohort. Finally, we evaluated the model performance using receiver operating characteristic curves (ROC), area under the ROC curve (AUC), accuracy, specificity, and F1-scores.
The mean survival times of patients in the SEER and Chinese cohort were 21.8 months and 37.0 months, respectively. Age, marital status, grade, T stage, N stage, tumor size, brain metastasis, liver metastasis, lung metastasis, and surgery were included in the ML model. We observed that all four ML algorithms performed well in predicting the 1-year and 3-year OS of patients with ccRCC-BM.
ML is useful in predicting the survival of patients with ccRCC-BM, and ML models can play a positive role in clinical applications.
本研究旨在开发和验证基于机器学习(ML)算法的预测模型,用于预测透明细胞肾细胞癌(ccRCC)发生骨转移(ccRCC-BM)患者的预后,并确定适合临床决策的模型。
本回顾性研究从 2010 年至 2015 年(n=1490)的监测、流行病学和最终结果(SEER)数据库中获取了诊断为骨转移(ccRCC-BM)的 ccRCC 患者的信息,并收集了我们医院(n=42)ccRCC-BM 患者的临床病理信息。然后,我们应用了四种 ML 算法:极端梯度提升(XGB)、逻辑回归(LR)、随机森林(RF)和朴素贝叶斯模型(NB),以建立预测 ccRCC 骨转移患者总生存(OS)的模型。在 SEER 数据集,将 70%的患者随机分为训练队列,其余 30%作为验证队列。来自我们中心的数据作为外部验证队列。最后,我们使用受试者工作特征曲线(ROC)、ROC 曲线下面积(AUC)、准确性、特异性和 F1 评分来评估模型性能。
SEER 队列和中国队列患者的平均生存时间分别为 21.8 个月和 37.0 个月。年龄、婚姻状况、分级、T 分期、N 分期、肿瘤大小、脑转移、肝转移、肺转移和手术均包含在 ML 模型中。我们观察到,所有四种 ML 算法在预测 ccRCC-BM 患者的 1 年和 3 年 OS 方面均表现良好。
ML 可用于预测 ccRCC-BM 患者的生存情况,ML 模型可在临床应用中发挥积极作用。