University of Kassel, Germany.
Assessment. 2024 Apr;31(3):557-573. doi: 10.1177/10731911231167490. Epub 2023 Apr 24.
Suicide is a major global health concern and a prominent cause of death in adolescents. Previous research on suicide prediction has mainly focused on clinical or adult samples. To prevent suicides at an early stage, however, it is important to screen for risk factors in a community sample of adolescents. We compared the accuracy of logistic regressions, elastic net regressions, and gradient boosting machines in predicting suicide attempts by 17-year-olds in the Millennium Cohort Study ( = 7,347), combining a large set of self- and other-reported variables from different categories. Both machine learning algorithms outperformed logistic regressions and achieved similar balanced accuracies (.76 when using data 3 years before the self-reported lifetime suicide attempts and .85 when using data from the same measurement wave). We identified essential variables that should be considered when screening for suicidal behavior. Finally, we discuss the usefulness of complex machine learning models in suicide prediction.
自杀是一个全球性的主要健康问题,也是青少年死亡的主要原因之一。之前关于自杀预测的研究主要集中在临床或成人样本上。然而,为了在早期阶段预防自杀,对青少年的社区样本进行风险因素筛查是很重要的。我们比较了逻辑回归、弹性网络回归和梯度提升机在预测千禧年队列研究(n = 7347)中 17 岁青少年自杀企图的准确性,该研究结合了来自不同类别的大量自我报告和他人报告的变量。两种机器学习算法都优于逻辑回归,达到了相似的平衡准确率(使用自我报告的终生自杀企图前 3 年的数据时为 0.76,使用同一测量波的数据时为 0.85)。我们确定了在筛查自杀行为时应考虑的重要变量。最后,我们讨论了复杂的机器学习模型在自杀预测中的有用性。