Suppr超能文献

长端粒综合征中的家族性克隆性造血

Familial Clonal Hematopoiesis in a Long Telomere Syndrome.

机构信息

From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.).

出版信息

N Engl J Med. 2023 Jun 29;388(26):2422-2433. doi: 10.1056/NEJMoa2300503. Epub 2023 May 4.

Abstract

BACKGROUND

Telomere shortening is a well-characterized cellular aging mechanism, and short telomere syndromes cause age-related disease. However, whether long telomere length is advantageous is poorly understood.

METHODS

We examined the clinical and molecular features of aging and cancer in persons carrying heterozygous loss-of-function mutations in the telomere-related gene and noncarrier relatives.

RESULTS

A total of 17 mutation carriers and 21 noncarrier relatives were initially included in the study, and a validation cohort of 6 additional mutation carriers was subsequently recruited. A majority of the mutation carriers with telomere length evaluated (9 of 13) had long telomeres (>99th percentile). mutation carriers had a range of benign and malignant neoplasms involving epithelial, mesenchymal, and neuronal tissues in addition to B- and T-cell lymphoma and myeloid cancers. Five of 18 mutation carriers (28%) had T-cell clonality, and 8 of 12 (67%) had clonal hematopoiesis of indeterminate potential. A predisposition to clonal hematopoiesis had an autosomal dominant pattern of inheritance, as well as penetrance that increased with age; somatic and hotspot mutations were common. These and other somatic driver mutations probably arose in the first decades of life, and their lineages secondarily accumulated a higher mutation burden characterized by a clocklike signature. Successive generations showed genetic anticipation (i.e., an increasingly early onset of disease). In contrast to noncarrier relatives, who had the typical telomere shortening with age, mutation carriers maintained telomere length over the course of 2 years.

CONCLUSIONS

mutations associated with long telomere length conferred a predisposition to a familial clonal hematopoiesis syndrome that was associated with a range of benign and malignant solid neoplasms. The risk of these phenotypes was mediated by extended cellular longevity and by the capacity to maintain telomeres over time. (Funded by the National Institutes of Health and others.).

摘要

背景

端粒缩短是一种特征明确的细胞衰老机制,短端粒综合征会导致与年龄相关的疾病。然而,长端粒长度是否有利尚不清楚。

方法

我们研究了携带端粒相关基因 杂合失活突变的个体以及非携带者亲属的衰老和癌症的临床和分子特征。

结果

最初纳入研究的共有 17 名突变携带者和 21 名非携带者亲属,随后招募了另外 6 名突变携带者的验证队列。在评估端粒长度的 13 名 突变携带者中,大多数(9 名,占 9 名)的端粒较长(超过第 99 个百分位数)。除了 B 细胞和 T 细胞淋巴瘤和髓系癌症外,18 名 突变携带者中有多种良性和恶性肿瘤,涉及上皮、间充质和神经元组织。在 18 名 突变携带者中有 5 名(28%)有 T 细胞克隆性,在 12 名中有 8 名(67%)有不确定潜能的克隆性造血。克隆性造血倾向呈常染色体显性遗传模式,且随着年龄的增长而增加,具有较高的外显率;体细胞 和 热点突变很常见。这些和其他体细胞驱动突变可能发生在生命的头几十年,其谱系随后积累了具有时钟特征的更高突变负担。后代显示出遗传预期(即疾病的发病时间越来越早)。与非携带者亲属随着年龄增长而出现典型的端粒缩短不同, 突变携带者在 2 年内维持端粒长度。

结论

与长端粒长度相关的突变赋予了一种易患家族性克隆性造血综合征的倾向,这种综合征与一系列良性和恶性实体肿瘤有关。这些表型的风险是由细胞寿命延长和随着时间推移维持端粒的能力介导的。(由美国国立卫生研究院等资助)。

相似文献

1
Familial Clonal Hematopoiesis in a Long Telomere Syndrome.
N Engl J Med. 2023 Jun 29;388(26):2422-2433. doi: 10.1056/NEJMoa2300503. Epub 2023 May 4.
3
Risk-reducing bilateral salpingo-oophorectomy in women with BRCA1 or BRCA2 mutations.
Cochrane Database Syst Rev. 2018 Aug 24;8(8):CD012464. doi: 10.1002/14651858.CD012464.pub2.
4
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2.
5
Comparison of Telomere Structure in Eukaryotes.
Arch Razi Inst. 2024 Dec 31;79(6):1365-1374. doi: 10.32592/ARI.2024.79.6.1365. eCollection 2024 Dec.
7
Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis.
Cochrane Database Syst Rev. 2017 Jan 19;1(1):CD012040. doi: 10.1002/14651858.CD012040.pub2.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
9
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.

引用本文的文献

1
Causality between telomere length and breast diseases: a two-sample bidirectional Mendelian randomization study.
Ann Med Surg (Lond). 2025 Jul 18;87(9):5551-5556. doi: 10.1097/MS9.0000000000003601. eCollection 2025 Sep.
3
The house mouse maintains constant telomere length throughout life.
Nucleic Acids Res. 2025 Aug 27;53(16). doi: 10.1093/nar/gkaf830.
4
Long-term effects of BCG vaccination on telomere length and telomerase activity.
iScience. 2025 Jul 18;28(8):113159. doi: 10.1016/j.isci.2025.113159. eCollection 2025 Aug 15.
6
Germline Variants in a Pan-Cancer Cohort.
JCO Precis Oncol. 2025 Jul;9:e2400946. doi: 10.1200/PO-24-00946. Epub 2025 Jul 9.
7
Detecting and quantifying clonal selection in somatic stem cells.
Nat Genet. 2025 Jul 3. doi: 10.1038/s41588-025-02217-y.
8
Myelodysplastic syndrome diagnosed by genetic testing for hereditary cancer: a case report.
NPJ Genom Med. 2025 May 15;10(1):39. doi: 10.1038/s41525-025-00476-6.

本文引用的文献

1
Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis.
Nat Genet. 2022 Aug;54(8):1155-1166. doi: 10.1038/s41588-022-01121-z. Epub 2022 Jul 14.
2
Clonal dynamics of haematopoiesis across the human lifespan.
Nature. 2022 Jun;606(7913):343-350. doi: 10.1038/s41586-022-04786-y. Epub 2022 Jun 1.
3
The Role of Telomeres in Human Disease.
Annu Rev Genomics Hum Genet. 2022 Aug 31;23:363-381. doi: 10.1146/annurev-genom-010422-091101. Epub 2022 Jun 24.
4
Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis.
J Exp Med. 2022 May 2;219(5). doi: 10.1084/jem.20211681. Epub 2022 Apr 14.
5
Life histories of myeloproliferative neoplasms inferred from phylogenies.
Nature. 2022 Feb;602(7895):162-168. doi: 10.1038/s41586-021-04312-6. Epub 2022 Jan 20.
7
Germline POT1 variants can predispose to myeloid and lymphoid neoplasms.
Leukemia. 2022 Jan;36(1):283-287. doi: 10.1038/s41375-021-01335-w. Epub 2021 Jun 30.
8
Cancer-associated POT1 mutations lead to telomere elongation without induction of a DNA damage response.
EMBO J. 2021 Jun 15;40(12):e107346. doi: 10.15252/embj.2020107346. Epub 2021 May 2.
9
Reconstructing the Lineage Histories and Differentiation Trajectories of Individual Cancer Cells in Myeloproliferative Neoplasms.
Cell Stem Cell. 2021 Mar 4;28(3):514-523.e9. doi: 10.1016/j.stem.2021.02.001. Epub 2021 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验