Suppr超能文献

核糖核蛋白颗粒共价调节剂的全球发现。

Global Discovery of Covalent Modulators of Ribonucleoprotein Granules.

机构信息

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

出版信息

J Am Chem Soc. 2023 May 24;145(20):11056-11066. doi: 10.1021/jacs.3c00165. Epub 2023 May 9.

Abstract

Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells. Liganded sites were enriched for RNA-binding and protein-protein interaction (PPI) domains, including several sites found in RNP granule-forming proteins. Among these, we functionally validate G3BP1 Y40, located in the NTF2 dimerization domain, as a ligandable site that can disrupt arsenite-induced SG formation in cells. In summary, we present a chemical strategy for the systematic discovery of condensate-modulating covalent small molecules.

摘要

应激颗粒(SGs)和处理体(PBs,P 体)是普遍存在且广泛研究的核糖核蛋白(RNP)颗粒,参与细胞应激反应、病毒感染和肿瘤微环境。虽然对 SGs 和 PBs 的蛋白质组学和转录组学研究提供了对分子组成的深入了解,但用于探测和调节 RNP 颗粒的化学工具仍然缺乏。在此,我们结合基于免疫荧光(IF)的表型筛选和化学蛋白质组学,鉴定出能够通过结合应激细胞中酪氨酸(Tyr)和赖氨酸(Lys)位点来预防或诱导 SG 和 PB 形成的磺酰三唑(SuTEx)。结合位点富含 RNA 结合和蛋白质-蛋白质相互作用(PPI)结构域,包括在形成 RNP 颗粒的蛋白质中发现的几个位点。在这些位点中,我们验证了位于 NTF2 二聚化结构域中的 G3BP1 Y40 是一个可配体的位点,可破坏亚砷酸盐诱导的细胞中 SG 的形成。总之,我们提出了一种用于系统发现凝聚物调节共价小分子的化学策略。

相似文献

1
Global Discovery of Covalent Modulators of Ribonucleoprotein Granules.
J Am Chem Soc. 2023 May 24;145(20):11056-11066. doi: 10.1021/jacs.3c00165. Epub 2023 May 9.
3
Glutamine modulates stress granule formation in cancer cells through core RNA-binding proteins.
J Cell Sci. 2025 Jun 1;138(11). doi: 10.1242/jcs.263679. Epub 2025 Jun 6.
4
G3BP2 promotes tumor progression and gemcitabine resistance in PDAC via regulating PDIA3-DKC1-hENT in a stress granules-dependent manner.
Acta Pharmacol Sin. 2025 Feb;46(2):474-488. doi: 10.1038/s41401-024-01387-5. Epub 2024 Sep 17.
5
TRBP modulates RLR signaling by inhibiting PKR-mediated antiviral stress granule formation.
Sci Rep. 2025 Jul 1;15(1):20678. doi: 10.1038/s41598-025-07121-3.
6
Zika Virus Subverts Stress Granules To Promote and Restrict Viral Gene Expression.
J Virol. 2019 May 29;93(12). doi: 10.1128/JVI.00520-19. Print 2019 Jun 15.
7
QKI shuttles internal mG-modified transcripts into stress granules and modulates mRNA metabolism.
Cell. 2023 Jul 20;186(15):3208-3226.e27. doi: 10.1016/j.cell.2023.05.047. Epub 2023 Jun 27.
8
Targeting the NTF2-like domain of G3BP1: Novel modulators of intracellular granule dynamics.
Biochem Biophys Res Commun. 2024 Feb 19;697:149497. doi: 10.1016/j.bbrc.2024.149497. Epub 2024 Jan 12.
10
RNA partitioning into stress granules is based on the summation of multiple interactions.
RNA. 2021 Feb;27(2):174-189. doi: 10.1261/rna.078204.120. Epub 2020 Nov 16.

引用本文的文献

1
A Charge-Driven Strategy for Covalent Modification and Modulation of Biomolecular Condensates.
J Am Chem Soc. 2025 Aug 13;147(32):28558-28563. doi: 10.1021/jacs.5c06625. Epub 2025 Aug 2.
2
Advances in sulfonyl exchange chemical biology: expanding druggable target space.
Chem Sci. 2025 May 6;16(23):10119-10140. doi: 10.1039/d5sc02647d. eCollection 2025 Jun 11.
3
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
4
Imidazoles are Tunable Nucleofuges for Developing Tyrosine-Reactive Electrophiles.
Chembiochem. 2024 Aug 19;25(16):e202400382. doi: 10.1002/cbic.202400382. Epub 2024 Jul 18.

本文引用的文献

1
Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules.
Cell. 2023 Feb 16;186(4):803-820.e25. doi: 10.1016/j.cell.2022.12.046. Epub 2023 Feb 3.
2
Principles and functions of condensate modifying drugs.
Front Mol Biosci. 2022 Nov 22;9:1007744. doi: 10.3389/fmolb.2022.1007744. eCollection 2022.
3
Global profiling identifies a stress-responsive tyrosine site on EDC3 regulating biomolecular condensate formation.
Cell Chem Biol. 2022 Dec 15;29(12):1709-1720.e7. doi: 10.1016/j.chembiol.2022.11.008. Epub 2022 Dec 6.
4
Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition.
Nat Cell Biol. 2022 Sep;24(9):1378-1393. doi: 10.1038/s41556-022-00988-8. Epub 2022 Sep 8.
5
Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
Trends Pharmacol Sci. 2022 Oct;43(10):820-837. doi: 10.1016/j.tips.2022.07.001. Epub 2022 Aug 23.
6
Modulating biomolecular condensates: a novel approach to drug discovery.
Nat Rev Drug Discov. 2022 Nov;21(11):841-862. doi: 10.1038/s41573-022-00505-4. Epub 2022 Aug 16.
7
Systematic discovery of biomolecular condensate-specific protein phosphorylation.
Nat Chem Biol. 2022 Oct;18(10):1104-1114. doi: 10.1038/s41589-022-01062-y. Epub 2022 Jul 21.
9
The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability.
Cell. 2022 Jun 9;185(12):2035-2056.e33. doi: 10.1016/j.cell.2022.05.008.
10
Reactive chemistry for covalent probe and therapeutic development.
Trends Pharmacol Sci. 2022 Mar;43(3):249-262. doi: 10.1016/j.tips.2021.12.002. Epub 2022 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验